Bond Graphs, CellML, ApiNATOMY & OpenCOR

Peter Hunter & Soroush Safaei, 17th July 2017

Note: To run the examples, use OpenCOR - available for Windows, MacOS and Linux from www.opencor.ws

Contents:

1.	Intro i. ii. iii. iv. v. vi.	duction Biophysically based modelling Bond Graphs Transformers (TFs) and gyrators (GY) Standardised units Dimensional analysis History of bond graphs	5
	VII.	Link to continuum physics	
2.	Elect	rical systems	19
	i.	Circuit 1	
	ii.	Circuit 2	
	iii.	Circuit 3	
3.	Solid	mechanics & electromechanics	26
	i.	Spring-mass-damper	
	ii.	Double mass	
	iii.	Spring-mass pendulum	
	iv.	Voice coil (linear actuator)	
	v.	Beam bending	
	vi.	Beam with mass-spring-damper	
4.	Multi	body systems	53
	i.	Inverted pendulum	
	ii.	Finite element model of inverted inflexible pendulum	
	iii.	Finite element model of inverted flexible pendulum	
	iv.	Finite element model of double pendulum	
	v.	Finite element model of a rigid joint	
	vi.	Dynamics of a thrown ball in polar & RC coordinates	

page

5.	Contr	ol systems	72
	i.	PID controller	
	ii.	PID control of FE model of inverted pendulum with position & velocity feedback	
6.	Fluid	mechanics	77
	i.	Straight tube	
	ii.	Branching blood vessel	
	:::	Summatric branching trop	

page

- iv. Circulation system
- v. Renal circulation module
- vi. Vasa vasorum

		page
7.	Biochemical systems	96
	i. Diffusion	
	ii. Biochemical reactions	
	iii. Simple reaction 1	
	iv. Simple reaction 2	
	v. Enzyme catalysed reaction: Michaelis-Menten kinetics	
	vi. Reaction with mixed stoichiometry	
	vii. Membrane ion channels	
8.	Cellular systems	110
	i. Acid-base physiology	
	ii. GI tract enterocyte	
	iii. Renal tubular transport	
9.	Cardiomyocytes	118
10.	Membrane transporters	133
	i. Neutral membrane transporters	
	ii. Electrogenic membrane transporters	
	iii. ATPase-dependent transporters	
11.	Metabolism	152
	i. Glycolysis	
12.	A common framework based on bond graphs	154
	i. A GUI for creating bond BG models in OpenCOR	
	ii. Annotation with ApiNATOMY	
13.	Continuum concepts	159
14.	Mixture theory	162

1. Introduction

1.1 Biophysically based modelling
1.2 Bond Graphs
1.3 Transformers (TFs) and gyrators (GY)
1.4 Standardised units
1.5 Dimensional analysis
1.6 Link to continuum physics
1.7 History of bond graphs

1.1. Biophysically based modelling

Note: Seven units: Joule (J), Second (s), Meter (m), Coulomb (C), Candela (Cd), Mole (mol), Entropy (e)

- 1. Mechanics (J,s,m,e): (i) Solids; (ii) Fluids
- 2. Electro-physiology (J,s,C)
- 3. Heat transfer (J,s,e)
- 4. Signalling pathways (J,s,e)
- 5. Metabolic pathways (J,s,mol)
- 6. Membrane transporters (J,s,mol,C): (i) neutral; (ii) electrogenic; (iii) ATPase
- 7. Electro-magnetic (J,s,C,Cd)

Bond Graphs capture the physical mechanisms in a consistent framework

1.2 Bond Graphs

Bond graphs are a **domain-independent graphical description of dynamic behaviour of physical systems**. This means that systems from different domains (e.g. electrical, mechanical, hydraulic, acoustic, thermodynamic, material, etc) are described in the same way. Bond graphs are based on **energy and energy exchange**. All physical quantities are expressed in terms of energy or power in order to ensure consistency across different physical systems. A key objective is to distinguish between equations that arise from the **conservation laws of nature** and equations that express **constitutive relations** that arise from empirical observations or underlying statistical mechanics (including thermodynamic principles).

Many physical phenomena can be described by a **potential** (μ) in units of *Joules/some_quantity* where the *quantity q* could be meters (for mechanics), moles and entropy (for biochemistry and heat flow), or coulombs and candela (for electromagnetism), and the potential is driving a flow ($v = \dot{q}$) in units *quantity.s⁻¹*, such that their product μ (*J.quantity⁻¹*) x v (*quantity.s⁻¹*) = *Power* (*J.s⁻¹*).

A **bond** with **covariables** $\mu \& v$ is therefore used to represent **transmission of power**:

The bond represents a mechanism for the transmission of energy and power, and the arrow head indicates the assumed direction of power flow, i.e. from sources towards energy stores and energy dissipators (resistors or reactions).

The flow v and potential μ must satisfy conservation laws (e.g. mass or charge conservation for v and force balance or stoichiometric relations for μ).

The quantity (q), whose rate of change is v (i.e. $\frac{dq}{dt} = v$) can be stored *statically* in a 'capacitor' with a dependence on potential μ given empirically by $\mu = Eq$, or *dynamically* in an 'inductor' with $\mu = La$, where $a = \dot{v} = \ddot{q}$.

It can also be *dissipated* by a 'resistor' in proportion to \boldsymbol{v} with an empirical relation $\boldsymbol{\mu} = R\boldsymbol{v}$ or $\boldsymbol{v} = \kappa \boldsymbol{\mu}$.

Bond graphs use the concept of a **0-node** and a **1-node** (we will extend these later to include the 2D & 3D geometric constructs 2-node and 3-node needed for spatial PDE modelling).

The **0-node** defines a common potential μ and imposes a conservation constraint based on v - this is volume or mass conservation if q is volume or mass, or charge conservation if q is charge, etc.

The **1-node** defines a common flow v and imposes a conservation constraint based on μ – this is force balance for mechanical systems, Kirchhoff's voltage law for electrical circuits, or stoichiometric relations for biochemical systems, etc.

Relationships between state variables:

- Kinematic variables, mass conservation

- Constitutive relations

- Kinetic variables, energy conservation

Where p is the generalised momentum and is defined as the integral of generalised force μ . Note that this preserves a symmetry between kinetic variables μ , p & kinematic variables q, v. It also provides a symmetry between covariables q, μ (linked via E) and v, p (linked via L).

The LH formulation, which uses the generalised acceleration a, regards $\mu = La$ (e.g. Newton's F = ma, or the inductance relation $V = L\frac{at}{dt}$) as constitutive relations, whereas the RH formulation uses the generalised momentum $p = \int \mu dt$ as a fundamental definition of this kinetic variable and links it to the generalised velocity v via the constitutive relation p = Lv.

The LH formulation fits better with the electrical use of $\mu = La$ (where $V = L\frac{di}{dt}$ is a constitutive relation), while the RH formulation fits better with the mechanical use of $\mu = La$ (where F = ma is a law of physics).

An example

The constitutive relations associated with (common μ) **0-nodes** are for energy storage components (static or dynamic) The constitutive relations associated with (common v) **1-nodes** are for resistive components (energy dissipation) Bond graphs are a graphical notation for the set of linear constraint equations (the conservation laws), but note that

the constitutive laws can be nonlinear.

1.3 Transformers (TFs) and gyrators (GY)

A **transformer** is illustrated[†] by a lossless gearbox where the rotational mechanical power is converted between two shafts with gear ratio n > 1. The torque τ and angular velocity ω on the input and output sides of the gearbox are denoted by the BG variables μ_1^{τ} and v_1^{ω} and μ_2^{τ} and v_2^{ω} , respectively, where $\mu_2^{\tau} = n$. μ_1^{τ} and $v_1^{\omega} = n$. v_2^{ω} such that the power μ_1^{τ} . $v_1^{\omega} = \mu_2^{\tau}$. v_2^{ω} remains constant. This is represented in a BG diagram by

A gyrator is illustrated⁺ by a lossless electric motor where electrical power is converted to rotary mechanical power. The voltage V and current I on the input side of the motor are denoted by the BG variables μ_1^V and v_1^I and the torque τ and angular velocity ω on the output side of the motor are μ_2^{τ} and v_2^{ω} , respectively. $\mu_1^V = k \cdot v_2^{\omega}$ and $\mu_2^{\tau} = k \cdot v_1^I$ and the power $\mu_1^V \cdot v_1^I = \mu_2^{\tau} \cdot v_2^{\omega} = k \cdot v_1^I \cdot v_2^{\omega}$ remains constant. k is the back EMF. This is represented in a BG diagram by

$$\frac{\mu_1^V(=k.v_2^{\omega})}{v_1^I} \quad \text{GY:} k \quad \frac{\mu_2^\tau(=k.v_1^I)}{v_2^{\omega}}$$

Some examples that we discuss in detail later are:

Physics		Constitutive relations								
		Static	storage (elastance)	Dynam	ic storage	Dissipation				
		BG	BG Mechanism		Mechanism	BG	Mechanism			
Electrical		$\mu = \mathbf{E} \boldsymbol{q}$	electrical capacitor	$\mu = La$	inductor	$\boldsymbol{v} = \boldsymbol{\kappa} \boldsymbol{\mu}$	resistor (Ohm's law)			
Heat transfer		$\mu = Eq$	heat capacity			$\boldsymbol{v} = \kappa \boldsymbol{\mu}$	entropy个 (Fourier's law)			
hs	Solids	$\mu = Eq$	elastic spring (Hooke's law)	$\mu = La$	mass	$\boldsymbol{v} = \kappa \boldsymbol{\mu}$	viscous damper			
Mec	Fluids	$\boldsymbol{\mu} = p_0 e^{\boldsymbol{k} \boldsymbol{q}}$	Fluid compressibility or (for 1D flow, arterial distensibility)	$\mu = La$	mass	$v = \kappa \mu$	fluid viscosity			
a	Biochemical	$\boldsymbol{\mu} = RT \ln \mathbf{K} \boldsymbol{q}$	Boltzmann's formula			$\boldsymbol{v} = \kappa \left(e^{\boldsymbol{\mu_1}/RT} - e^{\boldsymbol{\mu_2}/RT} \right)$	biochemical reaction			
Biochemic	Diffusion	$\mu = Eq$	solute concentration			$\boldsymbol{v} = \boldsymbol{\kappa} \boldsymbol{\mu}$	entropy个 (<i>Fick's law</i>)			
	Ion channel	$\boldsymbol{\mu} = RT \ln \mathbf{K} \boldsymbol{q}$	thermodynamic relation			$\boldsymbol{\upsilon} = \kappa_{\varepsilon} \boldsymbol{\varepsilon}. \frac{q_1 - q_2 \cdot e^{-\varepsilon}}{1 - e^{-\varepsilon}},$ $(\boldsymbol{\varepsilon} = zF \boldsymbol{\mu}_E / RT)$	Goldman-Hodgkin-Katz (GHK)			

Note the (power)-conjugated variables:

- Electrical:
- Mechanical:
- Hydraulics:
- Thermodynamics:

voltage (J.C⁻¹) force (J.m⁻¹) torque (J.rad⁻¹) pressure (J.m⁻³) temperature (J.e⁻¹) x current $(C.s^{-1})$ = Power $(J.s^{-1} \text{ or } W)$ x velocity $(m.s^{-1})$ = " x angular velocity $(rad.s^{-1})$ = " x volume flow $(m^3.s^{-1})$ = " x entropy flow $(e.s^{-1})$ = "

1.4 Standardised units

			Mechanics		Biochemical	Heat	Electrical	Electro-
		Solid		Fluid	reactions	flow	circuit	magnetic
Dotontial	name	force	torque	pressure	chem potential	temperature	elect potential	
Potential	<mark>μ</mark> (u)	J.m⁻¹ (N)	J.rad-1 (Nm)	J.m ⁻³ (Pa)	J.mol⁻¹ (G)	J.e ⁻¹ (K)	J.C ⁻¹ (V)	J.cd ⁻¹
Quantity	q (q)	m	rad	m³	mol	е	С	cd
Flow	v (v) = i q	m.s ⁻¹	rad.s ⁻¹	m ³ .s ⁻¹	mol.s ⁻¹	e.s ⁻¹	C.s ⁻¹	cd.s ⁻¹
Rate of flow	a (a) = q	m.s ⁻²	rad.s ⁻²	m ³ .s ⁻²	mol.s ⁻²	e.s ⁻²	C.s ⁻²	cd.s ⁻²
Elastance	E (µ/q)	J.m ⁻²	J.rad ⁻²	J.m⁻ ⁶	J.mol ⁻²	J.e ⁻²	J.C ⁻²	J.cd ⁻²
Resistance	R (<mark>µ/v</mark>)	J.s.m ⁻²	J.s.rad ⁻²	J.s.m⁻ ⁶	J.s.mol ⁻²	J.s.e ⁻²	J.s.C ⁻²	J.s.cd ⁻²
Inductance	$L(\mu/a)$	J.s ² .m ⁻²	J.s ² .rad ⁻²	J.s².m⁻ ⁶	J.s ² .mol ⁻²	J.s ² .e ⁻²	J.s ² .C ⁻²	J.s ² .cd ⁻²

Note on SI units:

e=unit of entropy (S=k_B.InW)

Time	Second	S	Duration of 9,192,6731,770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium-133 atom
Length	Metre	m	Distance for light to travel 1/299,792,458 seconds (1/c) in a vacuum
Mass	Kilogram	kg	Such that Planck constant is 6.6260693x10 ⁻³⁴ J.s
Temperature	Kelvin	К	Such that Boltzmann constant $k_B = 1.3806505 \times 10^{-23} \text{ J.K}^{-1}$
Current	Ampere	А	Such that 1 C = 1 A.s
Amount of substance	Mole	mol	Such that the Avogadro constant is 6.0221415x10 ²³ mol ⁻¹
Luminous intensity	Candela	cd	The intensity, in a given direction, of a light source at 540x10 ¹² Hz with a radiant intensity in that direction of 1/683 W/steradian

http://www.bipm.org/en/measurement-units/

Note that *J*, *s* & *m* are the units of the 4D world in which we live, while *mol*, *e*, *C* & *Cd* are units based on the *countable objects* that make up that world – atoms, probability states, electrons & photons, respectively.

CellML units

def unit J_per_C as unit joule; unit coulomb {expo: -1}; enddef;

def unit C_per_s as unit coulomb; unit second {expo: -1}; enddef;

def unit J_per_C2 as unit joule; unit coulomb {expo: -2}; enddef;

def unit Js_per_C2 as unit joule; unit second; unit coulomb {expo: -2}; enddef; def unit J_per_m as unit joule; unit metre {expo: -1}; enddef;

def unit m_per_s as unit metre; unit second {expo: -1}; enddef;

def unit m_per_s2 as unit metre; unit second {expo: -2}; enddef;

def unit J_per_m2 as unit joule; unit metre {expo: -2}; enddef;

def unit Js_per_m2 as unit joule; unit second; unit metre {expo: -2}; enddef;

def unit Js2_per_m2 as unit joule; unit second {expo: 2}; unit metre {expo: -2}; enddef; def unit J_per_m3 as unit joule; unit metre {expo: -3}; enddef;

def unit m3_per_s as unit metre {expo: 3}; unit second {expo: -1}; enddef;

def unit J_per_m6 as unit joule; unit metre {expo: -6}; enddef;

def unit Js_per_m6 as unit joule; unit second; unit metre {expo: -6}; enddef;

def unit m3 as unit metre {expo: 3}; enddef;

def unit per_m3 as unit metre {expo: -3}; enddef; def unit J_per_mol as unit joule; unit mole {expo: -1}; enddef;

def unit mol_per_s as unit mole; unit second {expo: -1}; enddef;

def unit mol_per_s2 as unit mole; unit second {expo: -2}; enddef;

def unit J_per_mol2 as unit joule; unit mole {expo: -2}; enddef;

def unit Js_per_mol2 as unit joule; unit second; unit mole {expo: -2}; enddef;

def unit Js2_per_mol2 as unit joule; unit second {expo: 2}; unit mole {expo: -2}; enddef;

Common units expressed in terms of the standard units

Quantity	Common unit	Standard unit	Quantity	Symbol	Units
voltage	V	JC^{-1}			
force	Ν	Jm^{-1}			
pressure	Ра	Jm^{-3}	viscosity	η	$Js.m^{-3}$
mass	kg	$Js^{2}m^{-2}$	density	ρ	$Js^{2}m^{-5}$

Physical constants

Physical constant	Symbol	Value	Units	Meaning
Avogadro's number	N _A	6.022140857×10 ²³	mol^{-1}	number of atoms in 1 mole
Boltzmann's constant	k _B	1.38064852 × 10 ⁻²³	JK^{-1}	$k_{B}T$ is energy of 1 molecule at T (K)
Gas constant ($N_A k_B$)	R	8.314459861	$Jmol^{-1}K^{-1}$	RT is energy of 1 mole at T (K)
Charge on an electron	е	1.602176487×10 ⁻¹⁹	С	
Faraday's constant	F	96.48533289	$kC.mol^{-1}$	charge on 1 mole of electrons
<i>RT/F</i> at 25ºC (298K)	RT/F	25.679644402	mJ.C ⁻¹ or mV	
Gravitational constant	G	6.6740831 ×10 ⁻¹¹	$m^5 J^{-1} s^{-4}$	$f = G \frac{m_1 m_2}{r^2}$
Gravitational acceleration	g	~9.807	$m. s^{-2}$	varies with location
Specific heat of water	C _P	4.184	$kJ.kg^{-1}K^{-1}$	heat (kJ) to raise 1kg of water by 1deg K
Specific heat of copper	C _P	0.385	$kJ.kg^{-1}K^{-1}$	heat (kJ) to raise 1kg of copper by 1deg K

1.5 Dimensional analysis

To come ...

1.6 Link to continuum physics

* Note: Redo solid & fluid mechanics first together via Cauchy relations

1.7 History of bond graphs

The theory of **bond graphs** was pioneered by **Henry Paynter**¹, and further developed by **Karnopp** et al² in a series of text books aimed at mechanical engineers. **Breedveld**³ added the theory of **network thermodynamics**, pioneered by **Aharon Katchalsky**⁴, bond graphs evolved to become a more general **systems theory**. **Broenink**⁵ has also made major contributions. It provides a biophysically and thermodynamically consistent framework on which to base CellML models.

Bond graphs deal with energy transfer between different physical systems and make a distinction between the **supply, storage, transmission** and **dissipation** of energy. For details on the application of bond graphs to biological systems, see **Peter Gawthrop** and **Edmund Crampin**⁶⁻⁹.

Here we discuss the bond graph approach to modelling biological processes and how to map these concepts to the CellML framework. We start with electrical networks and Kirchhoff's circuit laws.

¹ Paynter H. Analysis and Design of Engineering Systems (MIT, Cambridge, Mass., 1961).

- ² Karnopp DC, Margolis DL and Rosenberg RC. *System dynamics*. 5th edition, Wiley, 2012.
- ³ Breedveld PC. Physical systems theory in terms of bond graphs. PhD thesis University of Twente, 1984.
- ⁴ Oster G, Perelson A, and Katchalsky A. *Network thermodynamics*. Nature (Lond.). 234:393, 1971.
- ⁵ Broenink JF. *Introduction to physical systems modelling with Bond Graphs*. 2000(?)
- ⁶ Gawthrop PJ and Crampin EJ. Energy based analysis of biochemical cycles using bond graphs. *Proc. R. Soc. A* 470:20140459, 2014.
- ⁷ Gawthrop PJ and Crampin EJ. Modular bond-graph modelling and analysis of biomolecular systems. *IET Systems Biology*, 2015.
- ⁸ Gawthrop PJ, Cursons J and Crampin EJ. Hierarchical bond graph modelling of biochemical networks. *Proc. R.* Soc A: *Mathematical, Physical and Engineering Sciences*, 471(2184), 2015.
- ⁹ Gawthrop PJ, Siekmann I, Kameneva T, Saha S, Ibbotson MR and Crampin EJ. The energetic cost of the action potential: bond graph modelling of electrochemical energy transduction in excitable membranes. arXiv:1512.00956

Unused

		Electrical	Mech	nanics	Biochemical	Heat	Electro-	Diffusion
		network	Solid	Fluid	reactions	flow	magnetic	Bindsion
Potential	μ (u)	J.C ⁻¹ (V)	J.m ⁻¹ (N)	J.m ⁻³ (Pa)	J.mol ⁻¹ (G)	J.e ⁻¹ (K)	J.cd ⁻¹	J.m ³ .mol ⁻¹
Quantity	q (q)	С	m	m ³	mol	е	cd	mol.m ⁻³
Flow	v (v) = i	C.s ⁻¹	m.s ⁻¹	m ³ .s ⁻¹	mol.s ⁻¹	e.s ⁻¹	cd.s ⁻¹	mol.m ⁻³ .s ⁻¹
Rate of flow	a (a) = 	C.s ⁻²	m.s ⁻²	m ³ .s ⁻²	mol.s ⁻²	e.s ⁻²	cd.s ⁻²	mol.m ⁻³ .s ⁻²
Elastance	E (µ/q)	J.C ⁻²	J.m ⁻²	J.m⁻ ⁶	J.mol ⁻²	J.e ⁻²	J.cd ⁻²	J.mol ⁻² .m ⁶
Resistance	R (<mark>µ/v</mark>)	J.s.C ⁻²	J.s.m ⁻²	J.s.m⁻ ⁶	J.s.mol ⁻²	J.s.e ⁻²	J.s.cd ⁻²	J.s.mol ⁻² .m ⁶
Inductance	$L(\mu/a)$	J.s ² .C ⁻²	J.s ² .m ⁻²	J.s ² .m ⁻⁶	J.s ² .mol ⁻²	J.s ² .e ⁻²	J.s ² .cd ⁻²	J.s ² .mol ⁻² .m ⁶

e=unit of entropy (S=k_B.lnW)

2. Electrical systems

Electrical **potential** μ (Volts or Joules/Coulomb) drives current *flow* or *velocity* v (Amps or Coulombs/s)

The *quantity* (in this case the charge) q (C) generates a voltage across the capacitor given empirically by a **constitutive relation**

$$\mu = Eq$$
, where elastance $E = \frac{1}{C}$ (capacitance C) has units *J.C*⁻². (Note: $\frac{d\mu}{dt} = Ev$).

An inductive **dynamic storage** system stores energy from the rate of change of current $\frac{dv}{dt} = a$ (C.s⁻²), with a constitutive relation:

$$\mu = La$$
, where inductance L has units J.s².C⁻².

A resistor represents a **dissipative** process proportional to the rate of change of charge $\frac{dq}{dt} = v$ (current), with a constitutive relation

 $\mu = R v$, where resistance R has units J.s.C⁻².

Examples:

2.1 Circuit 1

2.2 Circuit 2

2.3 Circuit 3

2.1 <u>Circuit 1</u>

Note that $\mu_3 = \mu_1 - \mu_2$ is the voltage drop across R₁. The equations are:

(i) Conservation laws:

for **0-node**: flow in = flow out for **1-node**: potentials sum to zero ($\mu_1 = \mu_2 + \mu_3$) for storage terms: $\frac{dq_1}{dt} = -v_1$; $\frac{dq_2}{dt} = v_1$

(ii) Constitutive relations: $\mu_1 = E_1 q_1$; $\mu_2 = E_2 q_2$; $\mu_3 = R_1 v_1$

Given initial values, these 6 equations can be solved for μ_1 , μ_2 , μ_3 and ν_1 , q_1 , q_2

CellML tutorial model electrical 1 and output from OpenCOR

2.2 <u>Circuit 2</u>

CellML tutorial model electrical 2 and output from OpenCOR

// Constitutive parameters
var E1: J_per_C2 {init: 20}
<pre>var E2: J_per_C2 {init: 10};</pre>
var E3: J_per_C2 {init: 10};
var R1: Js_per_C2 {init: 2};
var R2: Js_per_C2 {init: 2};
// Concernation laws
// Conservation laws
ode(q1 ,t)= - v1 ;
ode(q2 ,t)= v2 ;
ode(q3 ,t)= v3 ;
v1 = v2+v3;
u1 = u2+u4;
u2 = u3+u5;
// Constitutive relations
u1=F1*01
$\mu^2 = F^2 + \alpha^2$
$u_2 = E_2 * a_2$
$u = -13 \ q = 0,$
$\mathbf{u} = \mathbf{n} 1 \cdot \mathbf{v} \mathbf{I},$
U5 =K2* V3 ;

2.3 <u>Circuit 3</u>

Constitutive relations

 $\mu_1 = E_1 q_1; \ \mu_2 = R_1 v_1; \ \mu_3 = E_2 q_2; \ \mu_4 = R_4 v_1; \ \mu_5 = R_2 v_3; \ \mu_6 = L_1 a_3; \ \mu_7 = R_3 v_3$

Conservation laws and constitutive equations provide 13 equations in 13 unknowns $(\mu_1 \dots \mu_7, q_1, q_2, v_1 \dots v_3 \text{ and } a_3)$

Note that all the conservation laws are represented by equations involving flows only (storage or KCL flow balance at 0-nodes – 'mass conservation') or potentials only (KVL continuity at 1-nodes), whereas all constitutive relations are expressed by equations that involve flow and potential.

CellML tutorial model electrical 3 and output from OpenCOR

Now consider the structure of the equations:

 $\mu_{1} = E_{1}q_{1} \qquad \mu_{2} = R_{1}v_{1}$ $\mu_{3} = E_{2}q_{2} \qquad \mu_{4} = R_{4}v_{1}$ $\mu_{5} = R_{2}v_{3} \qquad \mu_{6} = L_{1}a_{3}$ $\mu_{7} = R_{3}v_{3}$

3 Solid mechanics & electromechanics

 μ is now either **mechanical force** (J.m⁻¹) or **mechanical torque** (J.rad⁻¹) and v is **velocity** or displacement rate \dot{q} (m.s⁻¹) or angular velocity (rad.s⁻¹). In both cases the product μ . v is power (J.s⁻¹).

Examples:

- 3.1 Spring-mass-damper-1
- 3.2 Spring-mass-damper-2
- 3.3 Double mass
- 3.4 Spring-mass pendulum
- 3.5 Voice coil (linear actuator)
- 3.6 Beam bending with a 6-port single element beam model in 2D space
- **3.7 Beam bending with a 3-port single node beam model in 2D space**
- 3.8 Beam with spring-mass-damper

3.1 Spring-mass-damper-1

The 1-node, representing a common flow and balanced potentials (forces), is applied at a single physical <u>point</u>, in contrast with an electrical network where the 1-node represents common flow in a <u>circuit</u>.

CellML tutorial model solid mechanics 1 and output from OpenCOR

3.2 Spring-mass-damper-2

Analytic solution

 $(E_1 - E_2)q_1 + R_1v_1 + L_1(a_1 + g) = 0$ or $Eq + R\dot{q} + L(\ddot{q} + g) = 0$ where $E = E_1 - E_2$, $R = R_1$, $L = L_1$ $q(t) = -\frac{Lg}{E} + ae^{-\beta t}\sin(kt + \phi)$ where $a, \beta, k \& \phi$ are parameters $\dot{q} = -a\beta e^{-\beta t}\sin(kt + \phi) + ake^{-\beta t}\cos(kt + \phi)$ $\ddot{q} = a\beta^2 e^{-\beta t}\sin(kt + \phi) - 2ak\beta e^{-\beta t}\cos(kt + \phi) - ak^2 e^{-\beta t}\sin(kt + \phi)$ Initial conditions:

$$q(0) = q_0 = -\frac{Lg}{E} + a\sin(\phi) \qquad \text{gives } a = \frac{q_0 + \frac{Lg}{E}}{\sin(\phi)}$$
$$\dot{q}(0) = 0 = -a\beta\sin(\phi) + ak\cos(\phi) \qquad \text{gives } \phi = \tan^{-1}\frac{k}{\beta}$$

Substituting into the governing equation and cancelling the $ae^{-\beta t}$ term:

E.
$$\sin(kt + \phi) + R. \{-\beta \sin(kt + \phi) + k\cos(kt + \phi)\} + L. \{\beta^2 \sin(kt + \phi) - 2k\beta\cos(kt + \phi) - k^2\sin(kt + \phi)\} = 0$$

 $\{E - \beta R + (\beta^2 - k^2)L\}\sin(kt + \phi) + k\{R - 2\beta L\}\cos(kt + \phi) = 0$

Since sin and cos are orthogonal functions, each coefficient must =0 and hence

$$\beta = \frac{R}{2L} \text{ and } E - \beta R + (\beta^2 - k^2)L = 0 \text{ or } k = \sqrt{\beta^2 + \frac{E - \beta R}{L}} = \frac{\sqrt{4EL - R^2}}{2L}$$

Hence $q(t) = (q_0 + \frac{Lg}{E})e^{-\frac{R}{2L}t} \cdot \frac{\sin(kt + \phi)}{\sin(\phi)} - \frac{Lg}{E}$, where $\phi = \tan^{-1}\left\{\frac{\sqrt{4EL - R^2}}{R}\right\} = \tan^{-1}\sqrt{\frac{4EL}{R^2} - 1}$

3.3 Double mass

 $\dot{v}_1 = a_1 \quad \dot{q}_1 = -v_1 \qquad v_3 = v_1 - v_2 \quad \dot{q}_3 = v_3 \quad \dot{v}_2 = a_2 \\ \mu_1 = \mu_2 + \mu_6 \qquad \mu_2 = \mu_4 + \mu_5 \qquad \mu_2 = \mu_3 + \mu_7$

// State variables
var q1 : metre {init: 1};
var q3 : metre {init: 0};
var v1 : m_per_s {init: 0};
var v2 : m_per_s {init: 0};
var v3: m_per_s;
<pre>var a1: m_per_s2;</pre>
var a2: m_per_s2;
var u1: J_per_m;
var <mark>u2</mark> : J_per_m;
var <mark>u3</mark> : J_per_m;
var <mark>u4</mark> : J_per_m;
var u5: J_per_m;
var <mark>u6</mark> : J_per_m;
var u7: J_per_m;
// Constitutivo poromotors

, constitutive pui	ameters
var E1: J_per_m2	{init: 20};
var E2: J_per_m2	{init: 20};
var R1: Js_per_m2	{init: 0.1};
var R2: Js_per_m2	{init: 0.1};
var L1: Js2_per_m2	{init: 10};
var L2: Js2_per_m2	{init: 10};

// Conservation laws ode(**q1**, t) = -**v1**; ode(q3, t) = v3;ode(**v1**, t) = **a1**; ode(v2, t) = a2;u1 = u2 + u6; $u^2 = u^4 + u^5;$ $u^{2} = u^{3} + u^{7};$ v3 = v1 - v2; // Constitutive relations $u1 = E1^{*}q1;$ **u3** = R2***v2**; **u4** = E2*q3; **u5** = R1***v3**; **u6** = L1*a1; **u7** = L2*a2;

3.4 Spring-mass pendulum

$$\mu_1^r = \mu_2^r - \mu_3^r - \mu_4^r + \mu_5^g \cos\theta$$

or $m\dot{v}_1^r = mr\omega^2 - E_1q_1 - R_1v_1^r + mg.\cos\theta$
or $\dot{v}_1^r = (r_0 + q_1)\omega^2 - (E_1q_1 + R_1v_1^r)/m + g.\cos\theta$
 $\mu_6^\theta = -\mu_7^\theta - \mu_5^g \sin\theta$
or $m\dot{v}_2^\theta = -m\omega v_1^r - mg.\sin\theta$
or $\dot{v}_2^\theta = -\omega v_1^r - g.\sin\theta - k(v_2^\theta)^2$

// State variables

```
var t: second {init: 0};
var theta: radian {init: 0};
var omega: radian_per_s {init: 1};
var r0: metre {init: 1};
var q1: metre {init: 0};
var v1: m_per_s {init: 0};
var v2: m_per_s {init: 0};
```

// Constitutive parameters

var g: m_per_s2 {init: 9.81}; var E1: J_per_m2 {init: 20}; var R1: Js_per_m2 {init: 0.1}; var M1: Js2_per_m2 {init: 10}; var k: per_m {init: 1};

// Equations

ode(theta , t) = omega; ode(q1, t) = v1; ode(v1, t) = (r0 + q1)*sqr(omega) - (E1*q1+R1*v1)/M1 + g*cos(theta); ode(v2, t) = -omega*v1-g*sin(theta);

CellML tutorial model solid mechanics 3 output from OpenCOR

3.5 Voice coil (linear actuator)

B is magnetic flux density (Js.C⁻¹.m⁻²) **l** is length of coil (m).

 $\frac{dv_1}{dt} = a_1 \quad \frac{dq_2}{dt} = v_2 \quad \frac{dv_2}{dt} = a_2$

 $\mu_1 \dots \mu_4$ are electrical potentials in J.C⁻¹ v_1 is electrical current flow in C.S⁻¹

 $\mu_5 ... \mu_8$ are mechanical forces in *J.m*⁻¹ ν_2 is displacement velocity in *m.s*⁻¹

Blv₁ has units Js.C⁻¹.m⁻².m.C.s⁻¹ = J.m⁻¹

Blv₂ has units Js.C⁻¹.m⁻².m.m.s⁻¹ = J.C⁻¹

Note lossless power transmission through GY: $\mu_4 v_1 = \mu_5 v_2 = B l v_1 v_2 (J.s^{-1})$

 $\mu_1 = \mu_2 + \mu_3 + \mu_4 \qquad \mu_5 = \mu_1 = \mu_1 + \mu_1 + \mu_1 + \mu_2 \qquad (Blv_1 = H)$

	μ_5	= μ ₆ -	+ μ ₇ +	- μ ₈	
(Blv	1 =	E ₂ q ₂	+ R ₂ v	2 +	L ₂ a ₂)

<pre>// State variables var q1: C {init: 0}; var v1: C_per_s {init: 1}; var a1: C_per_s2 {init: 0}; var q2: m {init: 0}; var v2: m_per_s {init: 0}; var a2: m_per_s2 {init: 0}; var u1: J_per_C {init: 10}; var u2: J_per_C; var u3: J_per_C; var u4: J_per_C; var u5: J_per_m; var u6: J_per_m;</pre>	<pre>// Constitutive parameters var E1: J_per_C2 {init: 1}; var E2: J_per_m2 {init: 1}; var R1: Js_per_C2 {init: 1}; var R2: Js_per_m2 {init: 1}; var L1: Js2_per_C2 {init: 1}; var L2: Js2_per_m2 {init: 1}; var B1: Js_per_C_m {init: 1};</pre>	<pre>// Conservation laws ode(v1, t) = a1; ode(q2, t) = v2; ode(v2, t) = a2; u1= u2 + u3 + u4; u5= u6 + u7 + u8; // Constitutive relations u2 = R1*v1; u3 = L1*a1; u4 = BI*v2; u5 = BI*v1; u6 = E2*q2;</pre>
var u5: J_per_m; var u6: J_per_m; var u7: J_per_m; var u8: J_per_m;		u5 = BI*v1; u6 = E2*q2; u7 = R2*v2; u8 = L2*a2;

Back EMF (Faraday's law of induction) Lorentz force

Note that the GY or 'gyrator' provides the lossless conversion between electrical and mechanical power.

CellML tutorial model solid mechanics 4 output from OpenCOR

Transfer function for Lorentz force actuator

In the time domain the two equations are:

 $R_1 \boldsymbol{v}_1 + L_1 \boldsymbol{a}_1 + \boldsymbol{B} \boldsymbol{l} \boldsymbol{v}_2 = \boldsymbol{\mu}_1$ $E_2 \boldsymbol{q}_2 + R_2 \boldsymbol{v}_2 + L_2 \boldsymbol{a}_2 = \boldsymbol{B} \boldsymbol{l} \boldsymbol{v}_1$

In the Laplace domain (s) the two equations are:

 $(\mathbf{R}_{1} + s\mathbf{L}_{1})\boldsymbol{v}_{1} + \boldsymbol{B}\boldsymbol{l}\boldsymbol{v}_{2} = \boldsymbol{\mu}_{1}$ $\left(\frac{\mathbf{E}_{2}}{s} + \mathbf{R}_{2} + s\mathbf{L}_{2}\right)\boldsymbol{v}_{2} = \boldsymbol{B}\boldsymbol{l}\boldsymbol{v}_{1}$

Substituting for $v_2 = Blv_1 / \left(\frac{E_2}{s} + R_2 + sL_2\right)$ from 2nd eqn into 1st:

$$(\mathbf{R}_1 + s\mathbf{L}_1)\boldsymbol{v}_1 + \boldsymbol{Bl}.\boldsymbol{Blv}_1 / \left(\frac{\mathbf{E}_2}{s} + \mathbf{R}_2 + s\mathbf{L}_2\right) = \boldsymbol{\mu}_1$$

or
$$\mu_1 = \left(R_1 + sL_1 + \frac{(Bl)^2}{\frac{E_2}{s} + R_2 + sL_2} \right) \upsilon_1 = \left(R_1 + sL_1 + \frac{s(Bl)^2}{E_2 + sR_2 + s^2L_2} \right) \upsilon_1$$

or
$$\frac{\mu_1}{\nu_1} = R_1 + sL_1 + \frac{s(Bl)^2}{E_2 + sR_2 + s^2L_2} = G(s)$$
 - this is the transfer function for impedance

or
$$\frac{v_1}{\mu_1} = \frac{1}{R_1 + sL_1 + \frac{s(Bl)^2}{E_2 + sR_2 + s^2L_2}}$$
 - this is the transfer function for admittance

or
$$\frac{v_1}{\mu_1} = \frac{E_2 + sR_2 + s^2L_2}{R_1 E_2 + s[R_1 R_2 + E_2 L_1 + (Bl)^2] + s^2[R_1 L_2 + R_2 L_1] + s^3[L_1 L_2]}$$

Note that G(s) has units of Js.C⁻² (ohms).
The impedance $G(s) = R_1 + sL_1 + \frac{s(Bl)^2}{E_2 + sR_2 + s^2L_2}$ is complex. To find the amplitude and phase, put $s = i\omega$:

Then
$$G(\omega) = R_1 + i\omega L_1 + \frac{i\omega(Bl)^2}{E_2 + i\omega R_2 - \omega^2 L_2}$$

$$= R_1 + i\omega L_1 + \frac{i\omega(Bl)^2}{(E_2 - \omega^2 L_2) + i\omega R_2} \cdot \frac{(E_2 - \omega^2 L_2) - i\omega R_2}{(E_2 - \omega^2 L_2) - i\omega R_2}$$

$$= R_1 + i\omega L_1 + \frac{R_2(\omega Bl)^2 + i\omega(Bl)^2(E_2 - \omega^2 L_2)}{(E_2 - \omega^2 L_2)^2 + (\omega R_2)^2}$$

$$= \left[R_1 + \frac{R_2(\omega Bl)^2}{(E_2 - \omega^2 L_2)^2 + (\omega R_2)^2} \right] + i\omega \left[L_1 + \frac{(Bl)^2(E_2 - \omega^2 L_2)}{(E_2 - \omega^2 L_2)^2 + (\omega R_2)^2} \right] = G_{real}(\omega) + i.G_{imag}(\omega)$$

Amplitude
$$|G| = \sqrt{G_{real}(\omega)^2 + G_{imag}(\omega)^2}$$

Phase
$$\Phi(\omega) = \tan^{-1}\left(\frac{G_{imag}(\omega)}{G_{real}(\omega)}\right) = \tan^{-1}\left(\frac{L_1\left\{\left(E_2 - \omega^2 L_2\right)^2 + (\omega R_2)^2\right\} + (Bl)^2\left(E_2 - \omega^2 L_2\right)}{R_1\left\{\left(E_2 - \omega^2 L_2\right)^2 + (\omega R_2)^2\right\} + R_2(\omega Bl)^2}\right)\right)$$

Expression	<u>Units</u>	
$ m R_1$ and $\omega m L_1$	Js.C ⁻²	<pre>// Constitutive parameters var E1: J_per_C2 {init: 0};</pre>
$\mathrm{E_2}$, $\omega\mathrm{R_2}$ and $\omega^2\mathrm{L_2}$, x $_1$	J.m ⁻²	var E2: J_per_m2 {init: 2000};
$\left(E_2-\omega^2 L_2\right)^2+(\omega R_2)^2$, \textbf{x}_2	J ² .m ⁻⁴	<pre>var R1: Js_per_C2 {init: 3.5}; var R2: Js_per_m2 {init: 0.4};</pre>
Bl	Js.C ⁻¹ .m ⁻¹	var L1: Js2_per_C2 {init: 0.15};
$R_2(\omega Bl)^2$	$Js.m^{-2}.(J.C^{-1}.m^{-1})^2 = J^3s.C^{-2}.m^{-4}$	var Bl: Js_per_C_m {init: 10};
$(\boldsymbol{Bl})^2 (\mathbf{E}_2 - \omega^2 \mathbf{L}_2)$	$(Js.C^{-1}.m^{-1})^2.J.m^{-2} = J^3s^2.C^{-2}.m^{-4}$	
$\frac{\mathrm{R}_{2}(\omega \boldsymbol{Bl})^{2}}{(\mathrm{E}_{2}-\omega^{2}\mathrm{L}_{2})^{2}+(\omega \mathrm{R}_{2})^{2}}$	J^{3} s. C^{-2} . m^{-4} . J^{-2} . m^{4} = Js. C^{-2}	

 G_{real} and G_{imag} Js.C⁻² (ohms)

 $\frac{(Bl)^2 (E_2 - \omega^2 L_2)}{(E_2 - \omega^2 L_2)^2 + (\omega R_2)^2}$

Note that when B = 0, $G(\omega) = R_1 + i\omega L_1$ and $\Phi = 45 deg$ when $R_1 = \omega L_1$ or $\omega = \frac{R_1}{L_1}$

 $J^{3}s^{2}.C^{-2}.m^{-4}.J^{-2}.m^{4} = Js^{2}.C^{-2}$

Simulation with B = 0

 $\Phi = 45 deg$ at $\omega = \frac{R_1}{L_1} = \frac{3.5}{0.15} = 23.34s^{-1}$ or $\log \omega = 1.368$

Find
$$\omega$$
 at which $\frac{d}{d\omega} \{ G_{real}(\omega) \} = 0$:

$$\frac{d}{d\omega} \Big\{ R_1 + \frac{R_2(\omega Bl)^2}{(E_2 - \omega^2 L_2)^2 + (\omega R_2)^2} \Big\} = R_2(Bl)^2 \frac{d}{d\omega} \Big\{ \frac{\omega^2}{(E_2 - \omega^2 L_2)^2 + (\omega R_2)^2} \Big\} = 0$$
i.e. $\frac{2\omega}{(E_2 - \omega^2 L_2)^2 + (\omega R_2)^2} - \omega^2 \frac{-4\omega L_2(E_2 - \omega^2 L_2) + 2\omega R_2^2}{\{(E_2 - \omega^2 L_2)^2 + (\omega R_2)^2\}^2} = 0$
or $\Big\{ \Big(E_2 - \omega^2 L_2 \Big)^2 + (\omega R_2)^2 \Big\} \Big\{ \Big(E_2 - \omega^2 L_2 \Big)^2 + (\omega R_2)^2 - \omega^2 \Big(R_2^2 - 2L_2 E_2 + 2L_2^2 \omega^2 \Big) \Big\} = 0$

or
$$\left\{ \left(E_2 - \omega^2 L_2 \right)^2 + (\omega R_2)^2 \right\} \left\{ E_2^2 - L_2^2 \omega^4 \right\} = 0$$

The 1st bracket is $L_2^2 \omega^4 + (R_2^2 - 2E_2L_2)\omega^2 + E_2^2 = 0$

with roots at
$$\omega^2 = \frac{-(R_2^2 - 2E_2L_2) \pm \sqrt{(R_2^2 - 2E_2L_2)^2 - 4E_2^2L_2^2}}{2L_2^2} = \frac{2E_2L_2 - R_2^2 \pm R_2\sqrt{R_2^2 - 4E_2L_2}}{2L_2^2}$$
 (I don't think these are relevant)

The 2nd bracket is $E_2^2 - L_2^2 \omega^4 = 0$

with roots at $\omega^4 = \left(\frac{E_2}{L_2}\right)^2$ or $\omega = \sqrt{\frac{E_2}{L_2}}$

With $E_2 = 2000 J.m^{-2}$ and $L_2 = 0.018 J.s^2.m^{-2}$, $\omega = \sqrt{\frac{E_2}{L_2}} = 333.33 s^{-1}$ or $\log \omega = 2.523$

Simulation with $B = 10 Js.C^{-1}.m^{-2}$

 $\omega =$

3.6 Beam bending with a 6-port single element beam model in 2D space

Note background to Euler-Bernoulli beam theory available at https://en.wikipedia.org/wiki/Euler-Bernoulli_beam_theory

In the following green is used for BG kinematic variables, red for BG kinetic potentials, and orange for internal variables used in the calculation of the BG quantities from beam theory.

 $x_1(=x) \& x_2$ are the global Cartesian coordinates and $\theta_3 (= \theta)$ is the in-plane rotation. Nodes *A* and *B* locate the ends of the beam. $y_A \& y_B (m)$ are beam end displacements and $\kappa_A \& \kappa_B (m^{-1})$ are beam end curvatures. $q_A^{x_j} \& q_B^{x_j} (m)$ are beam end positions and $q_A^{\theta_j} \& q_B^{\theta_j}$ are beam end rotations (*rad*). $v_A^{x_j} \& v_B^{x_j} (m.s^{-1})$ are beam end velocities and $v_A^{\theta_j} \& v_B^{\theta_j} (rad.s^{-1})$ are beam end angular velocities. $f_A \& f_B (J. m^{-1})$ are beam end forces and $M_A \& M_B (J. rad^{-1})$ are beam end bending moments. $\mu_A^{x_j} \& \mu_B^{x_j} (J.m^{-1})$ are beam end forces and $\mu_A^{\theta_j} \& \mu_B^{\theta_j} (J.rad^{-1})$ are beam end bending moments.

In 3D there are potentially 6 separate energy equations – 3 dealing with linear momentum along 3 orthogonal axes and 3 dealing with angular momentum about 3 orthogonal axes. The 3 displacements at node A are $q_A^{x_1}, q_A^{x_2}, q_A^{x_3}$; the 3 rotations are $q_A^{\theta_1}, q_A^{\theta_2}, q_A^{\theta_3}$; the 3 forces are $\mu_A^{x_1}, \mu_A^{x_2}, \mu_A^{x_3}$; and the 3 moments are $\mu_A^{\theta_1}, \mu_A^{\theta_2}, \mu_A^{\theta_3}$.

Bending behaviour of 2D beam treated as a 6-port device

Moments: $M_A = B_m \kappa_A$ where $B_m = EI$ (J.m) is bending modulus and $\kappa_A = y_A^{\prime\prime}$ is approximation for beam curvature.

Forces: $f_A = B_S y_A'''$ where $B_S (J.m^{-2})$ is beam stiffness and y_A''' generates shear force on beam face. For .. beam of bending modulus EI and length l, $B_S = \frac{3EI}{l^2}$ For rectangular beam $I = \frac{bh^3}{l^2}$ (b=width, h=depth).

Rather than trying to represent the beam as a bond graph under general loading conditions, we consider each loading configuration separately:

A 6-port single element beam model in 2D space

The undeformed beam is shown in black and the deformed beam is shown in purple. $y_n(x)$ are the shape modes with coefficients a_n , and $a_n\eta_n^A$ and $a_n\eta_n^B$ (summed over modes n) are the displacements normal to the undeformed beam axis at the two ends A and B. Together with the beam's centre of mass $x_1(t), x_2(t)$ and orientation $\theta(t)$, the coefficients $a_n(t)$ are time-dependent variables that completely describe the beam dynamics. The kinematic BG variables at the ends are shown in green (translations x_1^A, x_2^A and x_1^B, x_2^B and rotations θ^A and θ^B).

The relationship between the beam variables and the BG variables is given by:

Dynamics: Free vibration of cantilever beams at frequency ω (s⁻¹)

 $\frac{d^2}{dx^2} \left(EI \frac{d^2 y}{dx^2} \right) = \rho \omega^2 y \text{ where } y \text{ is amplitude, } EI (J.m) \text{ is bending modulus, and } \rho \text{ is linear density } (kg.m^{-1} \text{ or } Js^2m^{-3})$

General solution is

$$y = a_1 sin(\beta x) + a_2 cos(\beta x) + a_3 sinh(\beta x) + a_4 cosh(\beta x)$$

$$y' = \beta \{a_1 cos(\beta x) - a_2 sin(\beta x) + a_3 cosh(\beta x) + a_4 sinh(\beta x)\}$$

$$y'' = \beta^2 \{-a_1 sin(\beta x) - a_2 cos(\beta x) + a_3 sinh(\beta x) + a_4 cosh(\beta x)\}$$

$$y''' = \beta^3 \{-a_1 cos(\beta x) + a_2 sin(\beta x) + a_3 cosh(\beta x) + a_4 sinh(\beta x)\}$$

$$y'''' = \beta^4 \{a_1 sin(\beta x) + a_2 cos(\beta x) + a_3 sinh(\beta x) + a_4 cosh(\beta x)\} = \beta^4 y$$

$$\therefore \beta^4 = \frac{\rho \omega^2}{EI} \text{ or } \beta = \sqrt[4]{\frac{\rho \omega^2}{EI}} (m^{-1}). \text{ Note that } \sqrt{\frac{\rho}{EI}} \text{ has units } s.m^{-2}, \sqrt{\frac{EI}{\rho}} \text{ has units } m^2.s^{-1} \text{ and } \sqrt{\rho EI}. \omega \text{ has units } J.m^{-1}$$

Cantilever beams:

Free vibration of cantilever beam – case 1:

Right boundary conditions:

$$\frac{a_1}{a_2} = fn(\beta l) = -\frac{\cos(\beta l) + \cosh(\beta l)}{\sin(\beta l) + \sinh(\beta l)} = \frac{\sin(\beta l) - \sinh(\beta l)}{\cos(\beta l) + \cosh(\beta l)}$$

or $cos(\beta l)cosh(\beta l) + 1 = 0$, giving first 3 modes: $\beta l = 1.875, 4.694, 7.855$.

First 3 modes, with $\boldsymbol{\omega} = \boldsymbol{\beta}^2 \sqrt{\frac{EI}{\rho l^4}}$, are $\boldsymbol{\omega} = 3.52 \sqrt{\frac{EI}{\rho l^4}}$, 22.03 $\sqrt{\frac{EI}{\rho l^4}}$, 61.70 $\sqrt{\frac{EI}{\rho l^4}}$ (Note that $\sqrt{\frac{EI}{\rho l^4}}$ has units s^{-1})

Figure shows zeros of $cos(\beta l)cosh(\beta l) + 1$ for $\sqrt{\frac{EI}{\rho l^4}} = 1$

c (01)

$$y(x) = a_1 sin(\beta x) + a_2 cos(\beta x) - a_1 sinh(\beta x) - a_2 cosh(\beta x), \text{ where } a_1 = a_2.fn(\beta l)$$
$$y(x) = a_2 \{ fn(\beta l), [sin(\beta x) - sinh(\beta x)] + cos(\beta x) - cosh(\beta x) \}$$
Check $y(0) = 0$

$$y'(x) = a_2\beta \{fn(\beta l), [cos(\beta x) - cosh(\beta x)] - sin(\beta x) - sinh(\beta x)\}$$
 Check $y'(0) = 0$

 $y''(x) = a_2 \cdot \beta^2 \{-fn(\beta l)[sin(\beta x) + sinh(\beta x)] - cos(\beta x) - cosh(\beta x)\}$ Check y''(l) = 0

 $y^{\prime\prime\prime}(x) = a_2 \cdot \beta^3 \{-fn(\beta l)[cos(\beta x) + cosh(\beta x)] + sin(\beta x) - sinh(\beta x)\}$ Check $y^{\prime\prime\prime}(l) = 0$

Mode shapes:

Free vibration of cantilever beam – case 2:

Right boundary conditions:

$$\frac{a_1}{a_2} = fn(\beta l) = -\frac{\cos(\beta l) - \cosh(\beta l)}{\sin(\beta l) - \sinh(\beta l)} = -\frac{\cos(\beta l) + \cosh(\beta l)}{\sin(\beta l) + \sinh(\beta l)} \quad \text{or } tan(\beta l) = tanh(\beta l), \text{ giving first 3 modes: } \beta l = 3.92, 7.07, 10.20.$$
First 3 modes, with $\omega = \beta^2 \sqrt{\frac{EI}{\rho l^4}}$, are $\omega = 15.4 \sqrt{\frac{EI}{\rho l^4}}$, $50.0 \sqrt{\frac{EI}{\rho l^4}}$, $104.0 \sqrt{\frac{EI}{\rho l^4}}$ (Note that $\sqrt{\frac{EI}{\rho l^4}}$ has units s⁻¹)
$$\omega = 15.4 \qquad \omega = 50.0 \qquad \omega = 104.0$$

60

$$y(x) = a_1 sin(\beta x) + a_2 cos(\beta x) - a_1 sinh(\beta x) - a_2 cosh(\beta x)$$
, where $a_1 = a_2 fn(\beta x)$

- $y(x) = a_2 \{ fn(\beta l). [sin(\beta x) sinh(\beta x)] + cos(\beta x) cosh(\beta x) \}$
- $y'(x) = a_2\beta \{ fn(\beta l), [cos(\beta x) cosh(\beta x)] sin(\beta x) sinh(\beta x) \}$
- $y^{\prime\prime}(x) = a_2.\beta^2 \{-fn(\beta l)[sin(\beta x) + sinh(\beta x)] cos(\beta x) cosh(\beta x)\}$

 $y^{\prime\prime\prime}(x) = a_2.\beta^3 \{-fn(\beta l)[cos(\beta x) + cosh(\beta x)] + sin(\beta x) - sinh(\beta x)\}$

Check
$$y(0) = 0 \& y(l) = 0$$

Check $y'(0) = 0$
Check $y''(l) = 0$

ω

100

Mode shapes:

-1.5

Moment at LH end is
$$M = EIy''(0) = -2a_2EI\beta^2 = -2a_2EI\sqrt{\frac{\rho}{EI}}$$
. ω or $M = -2a_2\sqrt{\rho EI}$. ω (J)

Free vibration of cantilever beam – case 3:

Right boundary conditions:

$$\frac{a_3}{a_1} = -\frac{\sin(\beta l)}{\sinh(\beta l)} = \frac{\sin(\beta l)}{\sinh(\beta l)} \text{ or } \sin(\beta l) = 0, \text{ giving modes: } \beta l = n\pi, \text{ or } \omega = \sqrt{\frac{El}{\rho}} \beta^2 = \sqrt{\frac{El}{\rho}} \left(\frac{n\pi}{l}\right)^2 = \sqrt{\frac{El}{\rho l^4}} (n\pi)^2 \text{ for } n = 1,2,3,..$$

First 3 modes, with $\omega = n^2 \pi^2 \sqrt{\frac{El}{\rho l^4}}$, are $\omega = 9.87 \sqrt{\frac{El}{\rho l^4}}$, $39.48 \sqrt{\frac{El}{\rho l^4}}$, $88.83 \sqrt{\frac{El}{\rho l^4}}$ (Note that $\sqrt{\frac{El}{\rho l^4}}$ has units s⁻¹)
 $y(x) = a_1 \sin(\beta x)$ Check $y(0) = 0 \& y(l) = 0$
 $y'(x) = a_1 \beta \cdot \cos(\beta x)$
 $y''(x) = -a_1 \cdot \beta^2 \sin(\beta x)$ Check $y''(0) = 0 \& y''(l) = 0$ (since $\beta l = n\pi$)
 $y'''(x) = -a_1 \cdot \beta^3 \cos(\beta x)$

Mode shapes:

Vibrations of a pin jointed beam attached to a spring-mass system

Beam shape

 $u(u) = a \sin\left(\frac{n\pi}{2}u\right)$ for mode n

Energy terms are f_n^A (J.m⁻¹). y_n^A (m) and M_n^A (J.rad⁻¹). θ (rad) Power terms are f_n^A (J.m⁻¹). v_n^A (m.s⁻¹) and M_n^A (J.rad⁻¹). ω (rad)

$$y(x) = a_n \sin(\frac{1}{l}x) \text{ for mode } n$$

$$y'(x) = a_n \frac{n\pi}{l} \cos(\frac{n\pi}{l}x) \qquad \Rightarrow y'_n^A = \frac{n\pi}{l} \text{ and } y'_n^B = (-1)^n \cdot \frac{n\pi}{l}$$

$$y''(x) = -a_n \left(\frac{n\pi}{l}\right)^2 \sin(\frac{n\pi}{l}x) \qquad \Rightarrow M_n^A = B_m y''_n^A = 0 \text{ and } M_n^B = B_m y''_n^B = 0 \text{ where } B_m = EI (J.m)$$

$$y'''(x) = -a_n \left(\frac{n\pi}{l}\right)^3 \cos(\frac{n\pi}{l}x) \qquad \Rightarrow f_n^A = B_s y''_n^A = -\left(\frac{n\pi}{l}\right)^3 \cdot B_s a_n, \text{ where } B_s = \frac{3EI}{l^2} (J.m)$$

$$y'''(x) = a_n \left(\frac{n\pi}{l}\right)^4 \sin(\frac{n\pi}{l}x) \qquad f_n^B = B_s y''_n^B = (-1)^{n+1} \cdot \left(\frac{n\pi}{l}\right)^3 \cdot B_s a_n$$

$$q_A^{x_1} = x_1 - l^A \cos\theta - a_n \eta^A_n \sin\theta \qquad v_A^{x_1} = \dot{x}_1 + l^A \sin\theta \cdot \dot{\theta} - a_n \eta^A_n \cos\theta \cdot \dot{\theta} - \dot{a}_n \eta^A_n \sin\theta$$

$$q_A^{x_2} = x_2 - l^A \sin\theta + a_n \eta^A_n \cos\theta \qquad v_A^{x_2} = \dot{x}_2 - l^A \cos\theta \cdot \dot{\theta} - a_n \eta^B_n \sin\theta + \dot{a}_n \eta^A_n \cos\theta$$

$$q_B^{x_1} = x_1 + l^B \cos\theta - a_n \eta^B_n \sin\theta \qquad v_B^{x_1} = \dot{x}_1 - l^B \sin\theta \cdot \dot{\theta} - a_n \eta^B_n \sin\theta \cdot \dot{\theta}$$

$$q_B^{x_2} = x_2 + l^B \sin\theta + a_n \eta^B_n \cos\theta \qquad v_B^{x_1} = \dot{x}_1 - l^B \sin\theta \cdot \dot{\theta} - a_n \eta^B_n \sin\theta \cdot \dot{\theta}$$

$$q_B^{x_2} = x_2 + l^B \sin\theta + a_n \eta^B_n \cos\theta \qquad v_B^{x_1} = \dot{x}_1 - l^B \cos\theta \cdot \dot{\theta} - a_n \eta^B_n \sin\theta \cdot \dot{\theta}$$

$$q_B^{x_1} = \dot{x}_1 + l^B \cos\theta \cdot \dot{\theta} - a_n \eta^B_n \sin\theta \cdot \dot{\theta}$$

$$q_B^{x_1} = \dot{x}_1 + l^B \cos\theta \cdot \dot{\theta} - a_n \eta^B_n \sin\theta \cdot \dot{\theta}$$

$$q_B^{x_1} = \dot{x}_1 + l^B \cos\theta \cdot \dot{\theta} - a_n \eta^B_n \sin\theta \cdot \dot{\theta}$$

$$q_B^{x_1} = \dot{x}_1 + l^B \cos\theta \cdot \dot{\theta} - a_n \eta^B_n \sin\theta \cdot \dot{\theta}$$

$$q_B^{x_1} = \dot{x}_1 + l^B \cos\theta \cdot \dot{\theta} - a_n \eta^B_n \sin\theta \cdot \dot{\theta}$$

$$q_B^{x_2} = x_2 + l^B \sin\theta + a_n \eta^B_n \cos\theta$$

$$q_B^{x_1} = \dot{x}_1 + l^B \cos\theta \cdot \dot{\theta} - a_n \eta^B_n \sin\theta \cdot \dot{\theta}$$

$$q_B^{x_1} = \dot{x}_1 + l^B \cos\theta \cdot \dot{\theta} - a_n \eta^B_n \sin\theta \cdot \dot{\theta}$$

$$q_B^{x_1} = \dot{x}_1 + l^B \cos\theta \cdot \dot{\theta} - a_n \eta^B_n \sin\theta \cdot \dot{\theta}$$

$$q_B^{x_1} = \dot{x}_1 + l^B \cos\theta \cdot \dot{\theta} - a_n \eta^B_n \sin\theta \cdot \dot{\theta}$$

$$q_B^{x_1} = \dot{\theta}_1 \eta^B_n + \dot{\theta}$$

Beam equations

Spring-damper equations $E_1(J.m^{-2}), R_1(Js.m^{-2})$ $f_n^A = -\left(\frac{n\pi}{l}\right)^3 B_s a_n$, $f_n^B = (-1)^{n+1} \left(\frac{n\pi}{l}\right)^3 B_s a_n$, $f_e^C = E_1 \left(\frac{l_{BC}(t) - l_{BC}(0)}{l_{BC}(0)}\right)$ and $f_r^C = R_1 v_{BC}(t)$

System equations

 $\mu_{A}^{x_{1}} = -f_{n}^{A}sin\theta; \ \mu_{P}^{x_{1}} = -f_{n}^{B}sin\theta + (f_{e}^{C} + f_{r}^{C})sin\beta; \ \mu_{C}^{x_{1}} = (f_{e}^{C} + f_{r}^{C})sin\beta$ $\mu_A^{x_2} = f_n^A \cos\theta; \quad \mu_B^{x_2} = f_n^B \cos\theta + (f_e^C + f_r^C) \cos\beta; \quad \mu_c^{x_2} = (f_e^C + f_r^C) \cos\beta$

In this example there are 3 unknowns per mode: $x_1^B(t)$, $x_2^B(t)$ and a_n , which are determined by two force balance equations and one moment balance:

Force balance in $x_1: \mu_A^{x_1} + \mu_B^{x_1} + \mu_C^{x_1} = 0$ Force balance in $x_2: \mu_A^{x_2} + \mu_B^{x_2} + \mu_C^{x_2} = 0$ Moment balance: $\mu_B^{\chi_2}(x_1^B(t) - x_1^A) + \mu_C^{\chi_2}(x_1^C - x_1^A) = \mu_B^{\chi_1}(x_2^B(t) - x_2^A) + \mu_C^{\chi_1}(x_2^C - x_2^A)$

$$l_{BC}(t) = \sqrt{\left\{x_{1}^{B}(t) - x_{1}^{C}\right\}^{2} + \left\{x_{2}^{B}(t) - x_{2}^{C}\right\}^{2}}$$

$$v_{BC}(t) = \frac{(x_{1}^{B}(t) - x_{1}^{C})v_{1}^{B}(t) + (x_{2}^{B}(t) - x_{2}^{C})v_{2}^{B}(t)}{l_{BC}(t)}$$

$$\frac{dl_{BC}}{dt} = v_{BC}$$

$$tan(\beta) = \frac{x_{1}^{B}(t) - x_{1}^{C}}{x_{2}^{B}(t) - x_{2}^{C}}$$

$$x_{1}^{B}(t), x_{2}^{B}(t)$$

$$l_{AB}$$

$$u_{1}^{B}(t), x_{2}^{B}(t)$$

$$x_{1}^{B}(0), x_{2}^{B}(0)$$

3.7 Beam bending with a 3-port single node beam model in 2D space

1. Cantilever beam with one end built in and one end free

Static beam

Boundary conditions are: y(0) = 0; y'(0) = 0; y(l) = 0; y''(l) = 0;

$$y = \frac{\mu_1^{y}}{6EI} (3lx^2 - x^3) \quad \therefore \quad y'' = \frac{d^2y}{dx^2} = \frac{\mu_1^{y}}{EI} (l - x)$$

$$q_1^{y} = y|_{x=l} = \frac{\mu_1^{y}l^3}{3EI} \quad \text{and} \ q_1^{\kappa} = y''|_{x=0} = \frac{\mu_1^{y}l}{EI} = \frac{\mu_1^{\kappa}}{EI} \quad (\text{since } \mu_1^{\kappa} = \mu_1^{y}l)$$
More reaction of k is the set of the set of

Moments: $\mu_1^{\kappa} = B_m q_1^{\kappa}$ where $B_m = EI$ (*J.m*) is bending modulus Forces: $\mu_1^{\gamma} = B_s q_1^{\gamma}$ where $B_s = \frac{3EI}{l^3}$ (*J.m*⁻²) is beam stiffness

For rectangular beam $I = \frac{bh^3}{12}$ (b=width, h=depth).

Note: $\mu_1^{\kappa} = \mu_1^{\gamma} l = B_m q_1^{\kappa} = \frac{3EI}{l^2} q_1^{\gamma}$

From a BG perspective this is just a spring with an elastic modulus of $\frac{3EI}{l^3}$ (J.m⁻²)

Dynamic beam

For mode 1 (at
$$\omega = 3.52$$
):

$$y(x) = \frac{q_1^{\gamma}}{2l^3} (3lx^2 - x^3) + a_2 \left\{ \frac{\sin(\beta l) - \sinh(\beta l)}{\cos(\beta l) + \cosh(\beta l)} [\sin(\beta x) - \sinh(\beta x)] + \cos(\beta x) - \cosh(\beta x) \right\}$$

This is incorrect – need to determine mode when RH end is fixed at a displacement of 0.

2. Cantilever beam with both ends simply supported

Beam (length *l*) has load $\mu_1^{\mathbf{y}}$ at centre causing displacement q(x) with $q\left(\frac{l}{2}\right) = q_1^{\mathbf{y}}$ Boundary conditions are: q(0) = 0; q''(0) = 0; q(l) = 0; q''(l) = 0; $q(x) = \frac{\mu_1^{\mathbf{y}}}{6EI} (3lx^2 - x^3) \therefore q^{"} = \frac{d^2q}{dx^2} = \frac{\mu_1^{\mathbf{y}}}{EI} (l - x)$ $q_1^{\mathbf{y}} = q|_{x=l} = \frac{\mu_1^{\mathbf{y}}l^3}{3El}$ and $q_1^{\mathbf{k}} = q^{"}|_{x=0} = \frac{\mu_1^{\mathbf{y}}l}{El} = \frac{\mu_1^{\mathbf{k}}}{El}$ (since $\mu_1^{\mathbf{k}} = \mu_1^{\mathbf{y}}l$) Moments: $\mu_1^{\mathbf{k}} = B_m q_1^{\mathbf{k}}$ where $B_m = EI$ (J.m) is bending modulus Forces: $\mu_1^{\mathbf{y}} = B_s q_1^{\mathbf{y}}$ where $B_s = \frac{3EI}{l^3} (J.m^{-2})$ is beam stiffness For rectangular beam $I = \frac{bh^3}{12}$ (b=width, h=depth). Note: $\mu_1^{\mathbf{k}} = \mu_1^{\mathbf{y}}l = B_m q_1^{\mathbf{k}} = \frac{3EI}{l^2} q_1^{\mathbf{y}}$

From a BG perspective this is just a spring with an elastic modulus of $\frac{3EI}{l^3}$ (J.m⁻²)

3.8 Beam with spring-mass-damper (CellML tutorial model solid mechanics 3.6)

Add cantilever beam with bending resistance to spring-mass-damper example 3.1

// Constitutive parameters

var E_1: J_per_m2 {init: 20}; var R_1: Js_per_m2 {init: 0.1}; var L_1: Js2_per_m2 {init: 10}; var B_s: J_per_m2 {init: 10};

// Conservation laws
ode(q_1, t) = v_1;
ode(v_1, t) = a_1;
u_1=-u_2-u_3-u_4;

// Constitutive relations u_1 = E_1*q_1; u_2 = R_1*v_1; u_3 = L_1*a_1; u_4 = B_s*q_1;

Unused

Note that
$$\Phi = 0$$
 when $G_{imag}(\omega) = 0$ or $L_1 \left\{ \left(E_2 - \omega^2 L_2 \right)^2 + (\omega R_2)^2 \right\} + (Bl)^2 \left(E_2 - \omega^2 L_2 \right) = 0$
i.e. $L_1 \left(E_2^2 - 2E_2 L_2 \omega^2 + L_2^2 \omega^4 \right) + L_1 R_2^2 \omega^2 + E_2 (Bl)^2 - L_2 (Bl)^2 \omega^2 = 0$
Or $\left\{ L_1 E_2^2 + E_2 (Bl)^2 \right\} + \left\{ L_1 R_2^2 - 2E_2 L_1 L_2 - L_2 (Bl)^2 \right\} \omega^2 + \left\{ L_1 L_2^2 \right\} \omega^4 = 0$
Therefore $\omega^2 = \frac{-\left\{ L_1 R_2^2 - 2E_2 L_1 L_2 - L_2 (Bl)^2 \right\} \pm \sqrt{\left\{ L_1 R_2^2 - 2E_2 L_1 L_2 - L_2 (Bl)^2 \right\}^2 - 4L_1 L_2^2 \left\{ L_1 E_2^2 + E_2 (Bl)^2 \right\}}}{2L_1 L_2^2}$
When $B=0, \omega^2 = \frac{-\left\{ L_1 R_2^2 - 2E_2 L_1 L_2 \right\} \pm \sqrt{\left\{ L_1 R_2^2 - 2E_2 L_1 L_2 \right\}^2 - 4L_1 L_2^2 \left\{ L_1 E_2^2 \right\}}}{2L_1 L_2^2} = \frac{-\left\{ L_1 R_2^2 - 2E_2 L_1 L_2 \right\} \pm \sqrt{\left\{ R_2^4 - 4L_2 R_2^2 E_2 \right\}}}{2L_2^2} = \frac{-\left\{ R_2^2 - 2E_2 L_2 \right\} \pm \sqrt{\left\{ R_2^4 - 4L_2 R_2^2 E_2 \right\}}}{2L_2^2}$

Find
$$\omega$$
 for which $G_{real}(\omega) = G_{imag}(\omega)$:

$$R_{1} + \frac{R_{2}(\omega B l)^{2}}{(E_{2} - \omega^{2}L_{2})^{2} + (\omega R_{2})^{2}} = \omega \left[L_{1} + \frac{(B l)^{2}(E_{2} - \omega^{2}L_{2})}{(E_{2} - \omega^{2}L_{2})^{2} + (\omega R_{2})^{2}} \right] (R_{1} - \omega L_{1}) + R_{2}(\omega B l)^{2} = \omega (B l)^{2} (E_{2} - \omega^{2}L_{2}) [E_{2}^{2} - 2E_{2}L_{2}\omega^{2} + L_{2}^{2}\omega^{4}] (R_{1} - \omega L_{1}) + R_{2}(B l)^{2}\omega^{2} + (B l)^{2}L_{2}\omega^{3} - (B l)^{2}E_{2}\omega = 0 R_{1}E_{2}^{2} - \omega L_{1}E_{2}^{2} - 2R_{1}E_{2}L_{2}\omega^{2} + 2E_{2}L_{1}L_{2}\omega^{3} + R_{1}L_{2}^{2}\omega^{4} - L_{1}L_{2}^{2}\omega^{5} + R_{2}(B l)^{2}\omega^{2} + (B l)^{2}L_{2}\omega^{3} - (B l)^{2}E_{2}\omega = 0 [R_{1}E_{2}^{2}] - [L_{1}E_{2}^{2} + (B l)^{2}E_{2}]\omega + [R_{2}(B l)^{2} - 2R_{1}E_{2}L_{2}]\omega^{2} + [2E_{2}L_{1}L_{2} + (B l)^{2}L_{2}]\omega^{3} + [R_{1}L_{2}^{2}]\omega^{4} - [L_{1}L_{2}^{2}]\omega^{5} = 0$$

Unused

Geometric constraints

$$l_{AB} = \sqrt{\left\{x_1^B(t) - x_1^A\right\}^2 + \left\{x_2^B(t) - x_2^A\right\}^2}$$
$$l_{AC} = \sqrt{\left\{x_1^C - x_1^A\right\}^2 + \left\{x_2^C - x_2^A\right\}^2}$$
$$l_{BC}(t) = \sqrt{\left\{x_1^B(t) - x_1^C\right\}^2 + \left\{x_2^B(t) - x_2^C\right\}^2}$$

$$\mu_1^f = fn($$
) Note that power is $\mu_1^f v_1^f + \mu_2^\kappa v_2^\kappa$

$$\mu_{1}^{f} + \mu_{2}^{f} + \mu_{3}^{f} = \mathbf{0}$$

E₁ q_{1}^{y} + R₁ v_{1}^{y} + L₁ $a_{1}^{y} = \mathbf{0}$

4. Multibody systems

 μ is now either **mechanical force** (J.m⁻¹) or **mechanical torque** (J.rad⁻¹) and v is **velocity** or displacement rate \dot{q} (m.s⁻¹) or angular velocity (rad.s⁻¹). In both cases the product μ . v is power (J.s⁻¹).

Examples:

- 4.1 Inverted pendulum
- 4.2 Finite element model of inverted inflexible pendulum
- 4.3 Finite element model of inverted flexible pendulum
- 4.4 Finite element model of double pendulum
- 4.5 Finite element model of a rigid joint
- 4.6 Dynamics of a thrown ball in polar & RC coordinates

4.1 Inverted Pendulum

Substituting
$$\mu_{1}^{A} = \frac{m^{A}m^{B}}{m^{A}+m^{B}} \left\{ \frac{F^{A}}{m^{A}} + lcos\theta. \dot{\omega}^{B} - lsin\theta. (\omega^{B})^{2} \right\}$$
 and $\mu_{2}^{A} = m^{B} \left\{ g - lsin\theta. \dot{\omega}^{B} - lcos\theta. (\omega^{B})^{2} \right\}$ into (4):
 $J\dot{\omega}^{B} = lsin\theta. m^{B} \left\{ g - lsin\theta. \dot{\omega}^{B} - lcos\theta. (\omega^{B})^{2} \right\} - lcos\theta. \frac{m^{A}m^{B}}{m^{A}+m^{B}}. \left\{ \frac{F^{A}}{m^{A}} + lcos\theta. \dot{\omega}^{B} - lsin\theta. (\omega^{B})^{2} \right\}$
i.e. $\left\{ J + l^{2}m^{B} \left(sin^{2}\theta + \frac{m^{A}}{m^{A}+m^{B}}. cos^{2}\theta \right) \right\} \dot{\omega}^{B} = lsin\theta. m^{B}g - lcos\theta. \frac{m^{B}}{m^{A}+m^{B}}. F^{A} - l^{2}m^{B}sin\thetacos\theta. \frac{m^{B}}{m^{A}+m^{B}} \left(\omega^{B} \right)^{2}$
or $\left\{ \frac{(m^{A}+m^{B})J}{lm^{B}} + l(m^{A}+m^{B}sin^{2}\theta) \right\} \dot{\omega}^{B} = (m^{A}+m^{B})sin\theta. g - cos\theta. F^{A} - lm^{B}sin\thetacos\theta \left(\omega^{B} \right)^{2}$
or $\dot{\omega}^{B} = \left\{ (m^{A}+m^{B})sin\theta. g - cos\theta. F^{A} - lm^{B}sin\thetacos\theta \left(\omega^{B} \right)^{2} \right\} / \left\{ \frac{(m^{A}+m^{B})J}{lm^{B}} + l(m^{A}+m^{B}sin^{2}\theta) \right\}$

```
🐗 OpenCOR
                                                                                                                                                                             Х
File Edit View Tools Help
    inverted pendulum.cellml
                                                 \frac{\mathrm{d}\omega}{\mathrm{d}t} = \frac{(m_{A} + m_{B})\cdot\sin\theta\cdot g - \cos\theta\cdot F_{A} - l_{B}\cdot m_{B}\cdot\sin\theta\cdot\cos\theta\cdot\omega^{2}}{\frac{(m_{A} + m_{B})\cdot J_{B}}{l_{B}\cdot m_{B}} + l_{B}\cdot\left(m_{A} + m_{B}\cdot(\sin\theta)^{2}\right)}
                                                                                                                                                                            CellML Annotation CellML Text
        def comp main as
              // Unknowns
              var t: second {init: 0};
              var PI: dimensionless {init: 3.141592};
              //var theta: radian {init: 0.7854};
              var theta: radian {init: 0.1};
              var theta_deg: dimensionless;
              var omega: rad_per_s {init: 0};
              var omega_t: rad_per_s2;
Editing
              var g: m_per_s2 {init: 9.81};
              var l_B: metre {init: 1};
              var J_B: Js2_per_rad {init: 1};
                                                                                                                                                                              Raw CellML
Simulation
              var m_A: Js2_per_m2 {init: 1};
              var m_B: Js2_per_m2 {init: 1};
              var F_A: J_per_m {init: 0};
              var u_A_1: J_per_m;
              var u_A_2: J_per_m;
                                                                                                                                                                              Raw SED-ML
              var v_A_1: m_per_s {init: 0};
              var v_B_1: m_per_s {init: 0};
              var v_B_2: m_per_s {init: 0};
              ode(theta, t) = omega;
                                                                                                                                                                              Raw Text
              theta_deg = theta*180{dimensionless}/PI;
              ode(omega, t) = ((m_A+m_B)*sin(theta)*g-cos(theta)*F_A-1_B*m_B*sin(theta)*cos(theta)*sgr(omega))/((m_A+m_B)*J_B/(1_B*m_B*sin(theta)*cos(theta)*sgr(omega))/((m_A+m_B)*J_B/(1_B*m_B*sin(theta)))
              omega_t = ode(omega, t);
              u_A_1 = m_A m_B/(m_A+m_B)*(F_A/m_A+1_B*cos(theta)*omega_t-1_B*sin(theta)*sqr(omega));
              u_A_2 = m_B*(q-1_B*sin(theta)*omega_t-1_B*cos(theta)*sqr(omega));
              ode(v_A_1,t) = (F_A-u_A_1)/m_A;
              ode(v_B_1,t) = u_A_1/m_B:
              ode(v_B_2,t) = u_A_2/m_B-q;
```

enddef;

4.2 Finite element model of inverted inflexible pendulum

Standard FE form:

$$M\ddot{x} + R\dot{x} + Kx = f$$
or $M\dot{v} + Rv + Kq = \mu$ and $\dot{q} = v$
or $M\dot{v} = f(q, v, \mu)$ and $\dot{q} = v$
or $\dot{v} = M^{-1}, f(q, v, \mu)$ and $\dot{q} = v$
For inverted pendulum, $q = \begin{bmatrix} q_1^{4} \\ q_2^{4} \\ q_1^{R} \\ q_2^{R} \end{bmatrix}$, $v = \begin{bmatrix} v_1^{4} \\ v_2^{4} \\ v_1^{R} \\ v_2^{R} \end{bmatrix}$, $\dot{v} = \begin{bmatrix} v_1^{4} \\ v_2^{4} \\ v_1^{R} \\ v_2^{R} \end{bmatrix}$, $\dot{v} = \begin{bmatrix} v_1^{4} \\ v_2^{4} \\ v_1^{R} \\ v_2^{R} \end{bmatrix}$, $\dot{v} = \begin{bmatrix} v_1^{4} \\ v_2^{4} \\ v_1^{R} \\ v_2^{R} \end{bmatrix}$, $\dot{v} = \begin{bmatrix} v_1^{4} \\ v_2^{R} \\ v_1^{R} \\ v_2^{R} \end{bmatrix}$, $\dot{v} = \begin{bmatrix} v_1^{4} \\ v_2^{R} \\ v_1^{R} \\ v_2^{R} \end{bmatrix}$, $\dot{v} = \begin{bmatrix} v_1^{4} \\ v_2^{R} \\ v_1^{R} \\ v_2^{R} \end{bmatrix}$, $\dot{v} = \begin{bmatrix} v_1^{4} \\ v_2^{R} \\ v_1^{R} \\ v_2^{R} \end{bmatrix}$, $\dot{v} = \begin{bmatrix} v_1^{4} \\ v_2^{R} \\ v_1^{R} \\ v_2^{R} \end{bmatrix}$, $\dot{v} = \begin{bmatrix} v_1^{4} \\ v_2^{R} \\ v_1^{R} \\ v_2^{R} \end{bmatrix}$, $\dot{v} = \begin{bmatrix} v_1^{4} \\ v_2^{R} \\ v_1^{R} \\ v_2^{R} \end{bmatrix}$, $\dot{v} = \begin{bmatrix} v_1^{4} \\ v_2^{R} \\ v_1^{R} \\ v_2^{R} \end{bmatrix}$, $\dot{v} = \begin{bmatrix} v_1^{4} \\ v_2^{R} \\ v_1^{R} \\ v_2^{R} \end{bmatrix}$, $\dot{v} = \begin{bmatrix} v_1^{4} \\ v_2^{R} \\ v_1^{R} \\ v_2^{R} \end{bmatrix}$, $\dot{v} = \begin{bmatrix} v_1^{4} \\ v_2^{R} \\ v_1^{R} \\ v_2^{R} \end{bmatrix}$, $\dot{v} = \begin{bmatrix} v_1^{4} \\ v_2^{R} \\ v_1^{R} \\ v_2^{R} \end{bmatrix}$, $\dot{v} = \begin{bmatrix} v_1^{4} \\ v_1^{R} \\ v_2^{R} \\ v_1^{R} \\ v_2^{R} \end{bmatrix}$, $\dot{v} = \begin{bmatrix} v_1^{4} \\ v_1^{R} \\ v_2^{R} \\ v_2^{R} \end{bmatrix}$, $\dot{v} = \begin{bmatrix} v_1^{4} \\ v_1^{R} \\ v_2^{R} \\ v_2^{R} \end{bmatrix}$, $\dot{v} = \begin{bmatrix} v_1^{4} \\ v_1^{R} \\ v_2^{R} \\ v_2^{R} \end{bmatrix}$, $\dot{v} = \begin{bmatrix} v_1^{4} \\ v_1^{R} \\ v_2^{R} \\ v_2^{R} \end{bmatrix}$, $\dot{v} = \begin{bmatrix} v_1^{4} \\ v_1^{R} \\ v_2^{R} \\ v_2^{R} \end{bmatrix}$, $\dot{v} = \begin{bmatrix} v_1^{4} \\ v_1^{R} \\ v_2^{R} \\ v_2^{R} \end{bmatrix}$, $\dot{v} = \begin{bmatrix} v_1^{4} \\ v_2^{R} \\ v_2^{R} \\ v_2^{R} \end{bmatrix}$, $\dot{v} = \begin{bmatrix} v_1^{4} \\ v_2^{R} \\ v_2^{R} \\ v_2^{R} \end{bmatrix}$, $\dot{v} = \begin{bmatrix} v_1^{4} \\ v_2^{R} \\ v_2^{R} \\ v_2^{R} \end{bmatrix}$, $\dot{v} = \begin{bmatrix} v_1^{4} \\ v_2^{R} \\ v_2^{R} \\ v_2^{R} \end{bmatrix}$, $\dot{v} = \begin{bmatrix} v_1^{4} \\ v_2^{R} \\ v_2^{R} \\ v_2^{R} \end{bmatrix}$, $\dot{v} = \begin{bmatrix} v_1^{4} \\ v_2^{R} \\ v_2^{R} \\ v_2^{R} \end{bmatrix}$, $\dot{v} = \begin{bmatrix} v_1^{4} \\ v_2^{R} \\ v_2^{R} \\ v_2^{R} \end{bmatrix}$, $\dot{v} = \begin{bmatrix} v_1^{4} \\ v_2^{R} \\ v_2^{R} \\ v_2^{R} \end{bmatrix}$, $\dot{v} = \begin{bmatrix} v_1^{4} \\ v_2^{R} \\ v_2^{R} \\ v_2^{R} \end{bmatrix}$, $\dot{v} = \begin{bmatrix} v_1^{4} \\ v_2^{R} \\ v_2^{R} \\ v_2^{R} \end{bmatrix}$, $\dot{v} = \begin{bmatrix} v_1^{4} \\ v_2^{R} \\ v_2^{R} \\ v_2^{R} \end{bmatrix}$, $\dot{v} = \begin{bmatrix} v_1^{4} \\ v_2^{R} \\$

Note that applying boundary condition $v_2^A = 0$ removes eqn (2) from solution and then $F_2^A = m^A g - \mu_2^A$

OpenCOR

10

4

6

0

4.3 Finite element model of inverted flexible pendulum

Now add beam equation $\frac{\partial^2}{\partial x^2} \left(EI \frac{\partial^2 y}{\partial x^2} \right) = -\rho \frac{\partial^2 y}{\partial t^2}$ where y is amplitude of flex orthogonal to beam axis.

 $\it EI$ (J.m) is bending modulus, and ρ is linear density (kg.m-1 or $\it Js^2m^{-3}$)

General solution is

$$\begin{split} y &= a_1(t)sin(\beta x) + a_2(t)cos(\beta x) + a_3(t)sinh(\beta x) + a_4(t)cosh(\beta x), \text{ where } \beta \text{ has units } (m^{-1}). \\ y' &= \beta \{a_1(t)cos(\beta x) - a_2(t)sin(\beta x) + a_3(t)cosh(\beta x) + a_4(t)sinh(\beta x)\} \\ y'' &= \beta^2 \{-a_1(t)sin(\beta x) - a_2(t)cos(\beta x) + a_3(t)sinh(\beta x) + a_4(t)cosh(\beta x)\} \\ y''' &= \beta^3 \{-a_1(t)cos(\beta x) + a_2(t)sin(\beta x) + a_3(t)cosh(\beta x) + a_4(t)sinh(\beta x)\} \\ y'''' &= \beta^4 \{a_1(t)sin(\beta x) + a_2(t)cos(\beta x) + a_3(t)sinh(\beta x) + a_4(t)cosh(\beta x)\} = \beta^4 y \\ \therefore -\rho \ddot{y} &= EI.\beta^4 y \end{split}$$

Case 1

$$y(0) = 0 \ y(l) = 0 \ \therefore a_4(t) = -a_2(t)$$

$$y''(0) = 0 \ y''(l) = 0 \ a_4(t) = a_2(t) = 0$$

$$sin(\beta l) = 0 \ or \ \beta l = n\pi.$$

Vibration modes are $\omega = \sqrt{\frac{EI}{\rho}} \beta^4 = \sqrt{\frac{EI}{\rho}} \left(\frac{n\pi}{l}\right)^4 = \sqrt{\frac{EI}{\rho l^4}} (n\pi)^4$ for n = 1, 2, 3, ... (Note: $\sqrt{\frac{EI}{\rho l^4}}$ has units s^{-1}) Note: First 3 modes, with $\omega = n^2 \pi^2 \sqrt{\frac{EI}{\rho l^4}}$, are $\omega = 9.87 \sqrt{\frac{EI}{\rho l^4}}$, $39.48 \sqrt{\frac{EI}{\rho l^4}}$, $88.83 \sqrt{\frac{EI}{\rho l^4}}$ $y(x) = \sum y_n(t) . sin\left(\frac{n\pi}{l}x\right)$ Check y(0) = 0 & y(l) = 0 $y'(x) = \sum y_n(t) . \frac{n\pi}{l} cos\left(\frac{n\pi}{l}x\right)$

$$y''(x) = -\sum y_n(t) \cdot \left(\frac{n\pi}{l}\right)^2 \sin\left(\frac{n\pi}{l}x\right) \qquad \text{Check } y''(0) = 0 \& y''(l) = 0$$
$$y'''(x) = -\sum y_n(t) \cdot \left(\frac{n\pi}{l}\right)^3 \cos\left(\frac{n\pi}{l}x\right)$$

where
$$\ddot{y}_{n}(t) = -\frac{EI}{\rho} \left(\frac{n\pi}{l}\right)^{4} y_{n}(t)$$
 for $n = 1, 2, 3, ...$

i.e. For each $y_n(t)$, solve $\dot{v}_n(t) = -\frac{EI}{\rho} \left(\frac{n\pi}{l}\right)^4$. $y_n(t)$ and $\dot{y}_n(t) = v_n(t)$)

 $y^{\prime\prime\prime\prime}(x) = \sum y_n(t) \cdot \left(\frac{n\pi}{l}\right)^4 \sin\left(\frac{n\pi}{l}x\right)$

Note: Solution is $y_n(t) = e^{\pm i \sqrt{\frac{EI}{\rho} \left(\frac{n\pi}{l}\right)^2 t}}$. Forces at ends of beam are $\mu^{bend} = \mu(0) = EI.y^{\prime\prime\prime}(0) = -EI.\sum \left(\frac{n\pi}{l}\right)^3 y_n(t)$

$$\begin{array}{c}
 x_{2} \\
 \mu_{2}^{R} - m^{B}\dot{v}_{2}^{R} - m^{B}\dot{v}_{1}^{R} - m^{B}\dot{v}_{1}^{R} \\
 \mu_{1}^{R} - m^{B}\dot{v}_{1}^{R} \\
 \mu_{1}^{A} + F_{2}^{A} - m^{A}\dot{v}_{2}^{A} - m^{A}g \\
 \mu_{1}^{A} + F_{1}^{A} - m^{A}\dot{v}_{1}^{A} \\
 (q_{1}^{A}, q_{2}^{A}, v_{1}^{A}, v_{2}^{A}) \\
\end{array}$$

$$\begin{array}{c}
 \mu_{1}^{A} = \mu^{truss}cos\theta + \mu^{bend}sin\theta \\
 \mu_{1}^{B} = -\mu^{truss}cos\theta - \mu^{bend}sin\theta \\
 \mu_{2}^{A} = \mu^{truss}sin\theta + \mu^{bend}cos\theta \\
 \mu_{2}^{B} = -\mu^{truss}sin\theta - \mu^{bend}cos\theta
\end{array}$$

Note that
$$\mu^{bend} = \mu(l) = EI. y^{\prime\prime\prime}(l) = -EI. \sum \left(\frac{n\pi}{l}\right)^3 (-1)^n y_n(t)$$

var t: second {init: 0}; var PI: dimensionless {init: 3.141592}; var theta_AB: dimensionless; var theta1_AB: dimensionless; var theta2_AB: dimensionless; var costheta_AB: dimensionless; var sintheta_AB: dimensionless; var g: m_per_s2 {init: 9.81}; var l_AB_0: metre {init: 1}; var l_AB: metre; var E: J_per_m {init: 10000}; var R_truss: Js_per_m {init: 10}; var R_beam: Js_per_m2 {init: 1}; var strain_AB: dimensionless; var strain_rate_AB: per_s; var m_A: Js2_per_m2 {init: 1}; var m_B: Js2_per_m2 {init: 1}; var F_A: J_per_m {init: 0}; var u_A_1: J_per_m; var u_A_2: J_per_m; var u_truss_AB: J_per_m; var u_beam_AB: J_per_m; var v_A_1: m_per_s {init: 0}; var v_A_2: m_per_s {init: 0}; var v_B_1: m_per_s {init: 0}; var v_B_2: m_per_s {init: 0}; var x_AB: metre; var y_AB: metre; var q_A_1: metre {init: 0}; var q_A_2: metre {init: 0}; var q_B_1: metre {init: 0.707106781}; var q_B_2: metre {init: 0.707106781}; var y_beam_AB_1: metre; var y_beam_AB_1_ampl: metre {init: 0.1}; var y_beam_AB_2: metre; var y_beam_AB_2_ampl: metre {init: 0.1}; var y_beam_AB_3: metre; var y_beam_AB_3_ampl: metre {init: 0.1}; var v_beam_AB: m_per_s {init: 0}; var EI: Jm {init: 0.03}; var rho: Js2_per_m3 {init: 1};

$$u_{beam_{AB}} = EI \cdot \left(\frac{\Pi}{l_{AB}}\right)^3 \cdot y_{beam_{AB_1}} + EI \cdot \left(\frac{2 \cdot \Pi}{l_{AB}}\right)^3 \cdot y_{beam_{AB_2}} + EI \cdot \left(\frac{3 \cdot \Pi}{l_{AB}}\right)^3 \cdot y_{beam_{AB_3}}$$

 $X_{AB} = q_{B_1-q_A_1};$ $y_{AB} = q_{B_2} - q_{A_2};$ $1_AB = sqrt(sqr(x_AB)+sqr(y_AB));$ $costheta_AB = x_AB/1_AB;$ sintheta_AB = $y_{AB}/1_{AB}$; strain_AB = $(1_AB - 1_AB_0)/1_AB_0;$ strain_rate_AB = $(x_{AB*}(v_{B_1-v_A_1})+y_{AB*}(v_{B_2-v_A_2}))/(1_{AB*}1_{AB_0});$ u_truss_AB = E*strain_AB+R_truss*strain_rate_AB; u_A_1 = u_truss_AB*costheta_AB+u_beam_AB*sintheta_AB; u_A_2 = u_truss_AB*sintheta_AB+u_beam_AB*costheta_AB; y_beam_AB_1 = y_beam_AB_1_ampl*sin(sqrt(EI/rho)*sqr(PI/l_AB)*t); y_beam_AB_2 = y_beam_AB_2_ampl*sin(sqrt(EI/rho)*sqr(2{dimensionless}*PI/l_AB)*t); y_beam_AB_3 = y_beam_AB_3_ampl*sin(sqrt(EI/rho)*sqr(3{dimensionless}*PI/l_AB)*t); u_beam_AB = EI*pow(PI/1_AB, 3{dimensionless})*y_beam_AB_1+EI*pow(2{dimensionless}*PI/1_AB, 3{dimensionless}*PI/1_AB, 3{dim $ode(v_A_1, t) = (F_A+u_A_1)/m_A;$ $ode(v_B_1, t) = -u_A_1/m_B;$ $ode(v_B_2, t) = -u_A_2/m_B-g;$ $ode(q_A_1, t) = v_A_1;$ $ode(q_A_2, t) = v_A_2;$ $ode(q_B_1, t) = v_B_1;$ $ode(q_B_2, t) = v_B_2;$ theta1_AB = acos(costheta_AB)*180{dimensionless}/PI; theta2_AB = asin(sintheta_AB)*180{dimensionless}/PI; theta_AB ={theta_calculation} sel case $(x_AB > 0 \{metre\})$ and $(y_AB > 0 \{metre\})$: theta1_AB; case $(x_AB > 0 \{metre\})$ and $(y_AB < 0 \{metre\})$: -theta1_AB; case $(x_AB < 0 \{ metre \})$ and $(y_AB < 0 \{ metre \})$: -theta1_AB: case $(x_AB < 0 \{ metre \})$ and $(y_AB > 0 \{ metre \})$: theta1_AB-360 {dimension[ess];

```
endsel;
```

	▶ : C :	0 🖋 🚽	} <u>₩</u> - 🕮	-]		· · · · · · · · · · · · · · · · · · ·			
	▼	Simulation		50					
	Property Value	Unit		50-		θ_{AB}	\frown		
	Starting 0	second		0-					
	Ending p 10	second		-50-		\		\	
	Point int 0.01	second		-100				\	
	<		>	-150				<u> </u>	
		Solvers		-200				<u> </u>	
		Barameters		-250		\sim	\sim		
	Property	Value		-230-					
	· ·	value	onne	1-	0	22	1	0	8 10
	main	0.07547060507			g^g (m) / /		\sim	\sim	\sim
	Costheta_AB	0.97517062507	. dimensionle	0.5		() () () () () () () () () (γ / \bigwedge
	C E	10000	J_per_m	-			$\land \land \land \land$	$ \land \rangle $	
	EI	0.03	Jm	0-		$ \setminus $			
	F_A	0	J_per_m		q_2^B (m) γ	$\gamma \neq \gamma \gamma$	$1 \qquad \qquad$	$1 \wedge Y$	
	🥶 g	9.81	m_per_s2	-0.5		\	\\	\\	
tin	A I_AB	1.00124422654	. metre			$\langle \rangle \rangle = \langle \rangle \rangle \langle \rangle \rangle$			
<u>.</u>	O I_AB_0	1	metre	-1-	V	V	V	V V	V
0	O m_A	1	Js2_per_m2	_	h)	1	5	8 10
ılati	⊙ m_B	1	Js2_per_m2	U.1	β γ beam AB - 1				
<u>Ē</u>	🕒 PI	3.141592	dimensionle	-		(
	S q_A_1	-0.1346385886	metre	0.05	$ A \rangle \langle \rangle$		$\{ \dots, $	Ă	
	R q_A_1'	0.51560395151	. metre/secor	-					
	S q_A_2	0	metre	0-	\mathbb{X}		\downarrow	\/\///	X
	R q_A_2'	0	metre/secor	-					
	Sq_B_1	0.84174536962	. metre	-0.05	ļ	$ \downarrow \downarrow //\downarrow$	$ \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$	$ \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$	
	R q_B_1'	-0.5156039515	metre/secor	-	$y_{beamAB-2}$				
	S q_B_2	-0.2217303931	metre	-0.1	V V		VV		VVV
	R q_B_2'	-4.5815680059	metre/secor		0 2	2	1 (6	8 10
	Θ R_beam	1	Js_per_m2	80-					
	🖲 R_truss	10	Js_per_m	-	11 toma of A.D.	Λ Λ	٨	٨	٨
	🕒 rho	1	Js2_per_m3	60-	•CTUSSAB	· · · · · · · · · · · · · · · · · · ·		Α	
	🔕 sintheta_AB	-0.2214548531	dimensionle	40					
	🔕 strain_AB	0.00124422654	. dimensionle	40-				1	
	🔕 strain_rate_A	B 0.00900681457	. per_s	20-	ļ	/ \ / \	/ \	/ /	
	🔍 t	0	second			$(\) \)$			
	🔕 theta1_AB	12.7945005566	. dimensionle	0	U horand AD	$\sim\sim\sim\sim\sim\sim$	$\sim \sim $	\sim	
	A thata? AR	-12 794500556	dimensionle ¥		w ∽ <i>DeumAB</i>		1		
	A theta1_AB A theta2 AB	12.7945005566 -12 794500556	. dimensionle dimensionle	0-	w <u>ubeamAB</u>				8 1

4.4 Finite element model of double pendulum

$$\begin{split} Mv + Rv + Kq &= \mu \\ or v = M^{-1}, f(q, v, \mu) & \text{and } q = v & q = \begin{bmatrix} q_1^{a_1} \\ q_2^{a_1} \\ q_3^{c_1} \\ q_3^{c_2} \\ q_3^{c_1} \\ q_3$$

def unit m_per_s as unit metre; unit second {expo: -1}; enddef: def unit m_per_s2 as unit metre; unit second {expo: -2}; enddef; def unit rad_per_s as unit radian; unit second {expo: -1}; enddef; def unit rad_per_s2 as unit radian; unit second {expo: -2}; enddef; def unit Js2_per_m2 as unit joule; unit second {expo: 2}; unit metre {*expo: -2*}; enddef; def unit J_per_m as unit joule; unit metre {expo: -1}; enddef: def unit Js2_per_rad as unit joule; unit second *{expo: 2}*; unit radian *{expo: -1}*; enddef;

var t: second {init: 0}; var u_truss_AB: J_per_m; var PI: dimensionless {init: 3.141592}; var u_truss_BC: J_per_m; var g: m_per_s2 {init: 9.81}; var v_A_1: m_per_s {init: 0}; var theta_AB: dimensionless; var v_A_2: m_per_s {init: 0}; var theta1_AB: dimensionless; var v_B_1: m_per_s {init: 0}; var theta2_AB: dimensionless; var v_B_2: m_per_s {init: 0}; var costheta_AB: dimensionless; var v_C_1: m_per_s {init: 0}; var sintheta_AB: dimensionless; var v_C_2: m_per_s {init: 0}; var theta_BC: dimensionless; var x_AB: metre; var theta1_BC: dimensionless; var y_AB: metre; var theta2_BC: dimensionless; var x_BC: metre; var costheta_BC: dimensionless; var y_BC: metre; var q_A_1: metre {init: 0}; var sintheta_BC: dimensionless; var q_A_2: metre {init: 0}; var angle_diff: dimensionless; var q_B_1: metre {init: 0.707106781}; var l_AB_0: metre {init: 1}; var q_B_2: metre {init: 0.707106781}; var l_AB: metre; var q_C_1: metre {init: 0.707106781}; var l_BC_0: metre {init: 1}; var q_C_2: metre {init: 1.707106781}; var l_BC: metre; var E: J_per_m {init: 10000}; var strain_AB: dimensionless; var strain_BC: dimensionless; var m_A: Js2_per_m2 {init: 1}; var m_B: Js2_per_m2 {init: 1}; var m_C: Js2_per_m2 {init: 1}; var F_A: J_per_m {init: 0}; $X_{AB} = q_{B_1-q_A_1};$ $y_{AB} = q_{B_2} - q_{A_2};$ 1_AB = sqrt(sqr(x_AB)+sqr(y_AB)); $costheta_AB = x_AB/1_AB;$ $sintheta_AB = y_AB/1_AB;$ $strain_{AB} = (1_{AB}-1_{AB}_0)/1_{AB}_0;$ u_truss_AB = E*strain_AB; $x_BC = q_C_1-q_B_1;$ $y_BC = q_C_2 - q_B_2;$ $1_BC = sqrt(sqr(x_BC)+sqr(y_BC));$ $costheta_BC = x_BC/I_BC;$ sintheta_BC = $y_BC/1_BC$; $strain_BC = (1_BC-1_BC_0)/1_BC_0;$ u_truss_BC = E*strain_BC; ode(v_A_1, t) = (u_truss_AB*costheta_AB+F_A)/m_A; ode(v_B_1, t) = (-u_truss_AB*costheta_AB+u_truss_BC*costheta_BC)/(m_B+m_C); ode(v_B_2, t) = (-u_truss_AB*sintheta_AB+u_truss_BC*sintheta_BC)/(m_B+m_C)-g; ode(v_C_1, t) = -u_truss_BC*costheta_BC/m_C; ode(v_C_2, t) = -u_truss_BC*sintheta_BC/m_C; $ode(q_A_1, t) = v_A_1;$ $ode(q_A_2, t) = v_A_2;$ $ode(q_B_1, t) = v_B_1;$ $ode(q_B_2, t) = v_B_2;$ $ode(q_C_1, t) = v_C_1;$ $ode(q_C_2, t) = v_C_2;$

	Simulation	b.		
Property Value	Unit			
Starting point 0	second			
Ending point 10	second			
Point interval 0.01	second			
<u><</u>	Cohiere			
	Graphs			
	Parameter	s		
Property	Value	Unit		
⊻ main				
Angle_diff	96.564184700007	dimensionless		
A costheta_AB	0.02199429914387	dimensionless		
Costheta_BC	0.990689843676722	dimensionless		
Q E	10000	J_per_m		
G F_A	0	J_per_m		
🧐 g	9.81	m_per_s2		
	0.993460846659496	metre		
AB 0	1	metre		
C LBC	0.995857630523614	metre		
	2 1	inette		
G m B		Is2 per m2		
(m C	1	Is2 per m2		
(PI	3.141592	dimensionless		
S a A 1	0.267796017757375	metre		
(q A 1'	-1.68045688685415	metre/second		
S q A 2	0	metre		
(B q A 2'	0	metre/second		
S q_B_1	0.289646492806526	metre		
(q_B_1	0.895479230055027	metre/second		
S q_8_2	-0.993220524649753	metre		
(q_B_2'	0.348552581266696	metre/second		
S q_C_1	1.27423133963001	metre		
R q_C_1'	-0.110501573255848	metre/second		
9 q_C_2	-0.857921170437068	metre		
(q_C_2'	-7.82335216563275	metre/second		
A sintheta_AB	-0.999758096143847	dimensionless		
sintheta_BC	0.136138288647212	dimensionless		
strain_AB	-0.0065391533405037 dimensionless			
strain_BC	-0.000102509470	o dimensionless		
Alberta 1 AD	0 7207262224772	second		
thetal PC	7 82444827652066	dimensionless		
A theta2 AR	-88 7397363234773	dimensionless		
A theta2 BC	7.82444837652964	dimensionless		
A theta AB	-88,7397363234773	dimensionless		
A theta BC	7.82444837652966	dimensionless		
(A) u truss AB	-65.391533405037	J_per_m		
A u_truss_BC	-61.6236947638638	J_per_m		
S v_A_1	-1.68045688685415	m_per_s		
(v_A_1'	-1.43824094718675	m_per_s/second		
@ v_A_2	0	m_per_s		
S v_B_1	0.895479230055027	m_per_s		
R v_B_1	-29.8058637926037	m_per_s/second		
S v_B_2	0.348552581266696	m_per_s		
W v_B_2'	-46.6925296431086	m_per_s/second		
Sv_C_1	-0.110501573255848	m_per_s		
0 v_C_1	61.0499685323942	m_per_s/second		
V_C_2	-7.82335216563275	m_per_s		
v_C_2'	8.38934434527058	m_per_s/second		
X_AB	0.0218504750491513	metre		
x_BC	0.984584846823483	metre		
A LA AR	11 1011 2 2 2011 2010 2010 2010 2010	A 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		
© v.B.2' © v.C.1 © v.C.1' © v.C.2 © v.C.2' © v.C.2' © v.C.2' © v.C.2' © v.C.2'	-46.6925296431086 -0.110501573255848 61.0499685323942 -7.82335216563275 8.38934434527058 0.0218504750491513 0.98458486823483	m_per_s/second m_per_s m_per_s/second m_per_s m_per_s/second metre metre		

4.5 Finite element model of a rigid joint

In this example we use the same geometry as the double pendulum of the previous example but now with a rigid joint which carries a moment between the two trusses.

The geometric relations for trusses on either side of the joint are:

 $l^{AB}\cos\theta^{AB} = q_1^B - q_1^A \qquad l^{BC}\cos\theta^{BC} = q_1^C - q_1^B$ $l^{AB}\sin\theta^{AB} = q_2^B - q_2^A \qquad l^{BC}\sin\theta^{BC} = q_2^C - q_2^B$

Taking the time derivative of the first row:

Taking the time derivative of the **second row**:

gives $-l^{AB}\cos\theta^{AB}$. $\dot{\theta}^{AB} = v_2^B - v_2^A$ or $\dot{\theta}^{AB} = (v_2^A - v_2^B)/l^{AB}\cos\theta^{AB}$, and $-l^{BC}\cos\theta^{BC}$. $\dot{\theta}^{BC} = v_2^C - v_2^B$ or $\dot{\theta}^{BC} = -(v_2^C - v_2^B)/l^{BC}\cos\theta^{BC}$ $\therefore \dot{\theta}^{AB} - \dot{\theta}^{BC} = (v_2^A - v_2^B)/l^{AB}\cos\theta^{AB} + (v_2^C - v_2^B)/l^{BC}\cos\theta^{BC} = 0$ or $(v_2^A - v_2^B)$. $l^{BC}\cos\theta^{BC} + (v_2^C - v_2^B)$. $l^{AB}\cos\theta^{AB} = 0$ or $v_2^B = (v_2^A . l^{BC}\cos\theta^{BC} + v_2^C . l^{AB}\cos\theta^{AB})/(l^{AB}\cos\theta^{AB} + l^{BC}\cos\theta^{BC})$ or $v_2^B = \{v_2^A . (q_1^C - q_1^B) + v_2^C . (q_1^B - q_1^A)\}/(q_1^C - q_1^A)$ (2)

Eqn (1) replaces the 3rd row of the previous set of equations: (or Eqn 2 could be used to replace the 4th row)

 χ_2 $\left(q_1^C, q_2^C, v_1^C, v_2^C\right) \stackrel{\clubsuit}{\longrightarrow} \mu_1^C - m^C \dot{v}_1^C$ зВС $(q_1^B, q_2^B, v_1^B, v_2^B) \longrightarrow \mu_1^B - (m^B + m^C) \dot{v}_1^B - (m^B + m^C) \dot{v}_1^B$ 1AB $(q_1^A, q_2^A, v_1^A, v_2^A)$ $\rightarrow x_1$ $v_2^A = 0$ $v_1^B = \{v_1^A \cdot (q_2^C - q_2^B) + v_1^C \cdot (q_2^B - q_2^A)\} / (q_2^C - q_2^A)$

```
v_{B_1} = \frac{v_{A_1} \cdot y_{BC} + v_{C_1} \cdot y_{AB}}{q_{C_2} - q_{A_2}}
var q_B_1: metre {init: 0.707106781};
var q_B_2: metre {init: 0.707106781};
var q_C_1: metre {init: 0.707106781};
var q_C_2: metre {init: 1.707106781};
X_{AB} = q_{B_1}-q_{A_1};
y_{AB} = q_{B_2}-q_{A_2};
1_AB = sqrt(sqr(x_AB)+sqr(y_AB));
costheta_AB = x_AB/1_AB;
sintheta_AB = y_{AB}/1_{AB};
strain_{AB} = (1_{AB}-1_{AB}_0)/1_{AB}_0;
u_truss_AB = E*strain_AB;
x_BC = q_C_1-q_B_1;
y_BC = q_C_2 - q_B_2;
1_BC = sqrt(sqr(x_BC)+sqr(y_BC));
costheta_BC = x_BC/1_BC:
sintheta_BC = y_BC/1_BC;
strain_BC = (1_BC-1_BC_0)/1_BC_0;
u_truss_BC = E^strain_BC;
ode(v_A_1, t) = (u_truss_AB*costheta_AB+F_A)/m_A;
v_B_1 = (v_A_1*y_BC+v_C_1*y_AB)/(q_C_2-q_A_2);
ode(v_B_2, t) = (-u_truss_AB*sintheta_AB+u_truss_BC*sintheta_BC)/(m_B+m_C)-g;
ode(v_C_1, t) = -u_truss_BC*costheta_BC/m_C;
ode(v_C_2, t) = -u_truss_BC*sintheta_BC/m_C;
ode(q_A_1, t) = v_A_1;
ode(q_A_2, t) = v_A_2;
ode(q_B_1, t) = v_B_1;
ode(q_B_2, t) = v_B_2;
ode(q_C_1, t) = v_C_1;
ode(q_C_2, t) = v_C_2;
theta1_AB = acos(costheta_AB)*180{dimensionless}/PI;
theta2_AB = asin(sintheta_AB)*180{dimensionless}/PI;
theta_AB ={theta_calculation} sel
    case (x_AB > 0 \{metre\}) and (y_AB > 0 \{metre\}):
         theta1_AB;
    case (x_AB > 0 \{metre\}) and (y_AB < 0 \{metre\}):
         -theta1_AB;
    case (x_AB < 0 \{metre\}) and (y_AB < 0 \{metre\}):
         -theta1_AB;
    case (x_AB < 0 \{ metre \}) and (y_AB > 0 \{ metre \}):
         theta1_AB-360 {dimensionTess};
endsel;
theta1_BC = acos(costheta_BC)*180{dimensionless}/PI;
theta2_BC = asin(sintheta_BC)*180{dimensionless}/PI;
theta_BC ={theta_calculation} sel
    case (x_BC > 0 \{metre\}) and (y_BC > 0 \{metre\}):
         theta1_BC;
    case (x_BC > 0 \{metre\}) and (y_BC < 0 \{metre\}):
         -theta1_BC;
    case (x_BC < 0 \{ metre \}) and (y_BC < 0 \{ metre \}):
         -theta1_BC;
    case (x_BC < 0 \{metre\}) and (y_BC > 0 \{metre\}):
        theta1_BC-360 {dimensionTess};
    otherwise:
        theta1_BC;
endsel;
angle_diff = theta_BC-theta_AB;
```

Rigid joint

	•	C [C	imulation	∳ 💘			▼ [
	Property Value			Unit	Indiacion				4
	Ctortin	arty art	o						
	Starting 0		second						
	Point int 0.01		second						
	<		0.01	secon	iu			>	
	•				Solvers				4
	•			D	Graphs				
	D			Pa	arameters		1.1	~	4
	Property				value		Unit		
					-1.5411422	976	metre/secor		
		9 q_0	C_2		0.45707206	339	metre		
		₩ q_(C_2'		-4.1155049	558	metre/secor		
		A sin	itheta_AB		-0.1626150	295	dimensionle		
	Sintheta_BC			: (0.62211574	804	dimensionle		
		A str	ain_AB		0.00611865	294	dimensionle		-
Ĕ		A str	ain_BC		-0.0023045	070	dimensionle		
diti		V t			0		second		
		A the	eta1_AB		9.358/1655	6763	dimensionle		
atio		A the	eta1_BC		38.4708107	575	dimensionle		
m		A the	eta2_AB		-9.358/165	5/6	dimensionle		
.=		A the	eta2_BC		38.4/0810/	5/5	dimensionle		
		A the	eta_AB		-9.358/165	576	dimensionle		
		A the	eta_BC		38.4708107	5/5	dimensionle		
		(A) u_1	truss_AB		61.1865294	9/1	J_per_m		
		(∆ u_1	truss_BC		-23.045070	897	J_per_m		
			A_1		-1.9619078	272	m_per_s		
	♥ V_A_1			60.3721118625			m_per_s/sec		
			4_Z		0	220	m_per_s		
				-2.1125218	330	m_per_s		0.	
	♥ v_B_2' ③ v_B_2' ⑤ v_C_1 ④ v_C_1'			-3.0493303	100	m_per_s		υ.	
				1 E 411422	076	m_per_s/sec		0.	
				- 1.54 1422 10 0125606	970	m_per_s	2		
					10.0423000	550		m_per_s/sec	0.
			د_د حین		-4.1133049 1/13367015	202	m por c/coc		
			⊂_∠ \ R		14.3307013 0.00272690	1205	motro		
					0.99212000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	metre		-
					0.1626100	111	metre	~	-0.

>

C

: **B**

<

$$\dot{v}_{1}^{A} = \left(\mu^{AB.truss}\cos\theta^{AB} + F_{1}^{A}\right)/m^{A}$$
$$\dot{v}_{2}^{B} = \left\{-\mu^{AB.truss}\sin\theta^{AB} + \mu^{AB.truss}\sin\theta^{BC} - \left(m^{B} + m^{C}\right)g\right\}/m^{A}$$
$$\dot{v}_{1}^{C} = -\mu^{BC.truss}\cos\theta^{BC}$$

 x_2

4.6 Dynamics of a thrown ball in polar & RC coordinates

RC coordinates

(3)

 $\dot{\boldsymbol{v}}_2 = -g$

Equilibrium in x_1 -direction: $m\dot{v}_1 = -kv_\theta sin\theta$

Equilibrium in x_2 -direction: $m\dot{v}_2 = -mg - kv_\theta cos\theta$ (4)

With no drag (k=0):

Equilibrium in *r*-direction:
$$-m\dot{v}_r + mr\omega^2 = mg.sin\theta$$

(1)

Equilibrium in θ -direction: $-m\dot{\boldsymbol{v}}_{\theta} - m\omega\boldsymbol{v}_{r} = mg.\cos\theta$ (2)

From (1) & (2):
$$(-m\dot{v}_r + mr\omega^2)^2 + (-m\dot{v}_\theta - m\omega v_r)^2 = (mg)^2$$

or $(\dot{v}_r)^2 + (\dot{v}_\theta)^2 + (\omega v_r)^2 + (r\omega^2)^2 - 2r\omega^2\dot{v}_r + 2\omega v_r\dot{v}_\theta = g^2$
or $(\dot{v}_r)^2 + (\dot{v}_\theta)^2 + (\omega v_r)^2 + 2\omega v_r\dot{v}_\theta + (r\omega^2)^2 - 2r\omega^2\dot{v}_r = g^2$
or $(\dot{v}_1)^2 + (\dot{v}_2)^2 = g^2$
(see calculation on the right)
From (1) & (2):: $(\dot{v}_\theta + \omega v_r)sin\theta - (\dot{v}_r - r\omega^2)cos\theta = 0$
But $\dot{v}_1 = (\dot{v}_\theta + \omega v_r)sin\theta - (\dot{v}_r - \omega v_\theta)cos\theta$, $\therefore \dot{v}_1 = 0$
Polar coordinate equations: $\dot{v}_r = r\omega^2 - a sin\theta$
Box $\dot{v}_1 = r\omega^2 - a sin\theta$
BC coordinate equations: $\dot{v}_1 = 0$
BC coordinate equations: $\dot{v}_1 = 0$
 $v_1 = -v_r cos\theta + v_\theta sin\theta$
 $v_1 = -v_r cos\theta + v_\theta sin\theta$
 $v_2 = v_r sin\theta + v_\theta cos\theta$
 $v_0 = v_1 sin\theta + v_2 cos\theta$
 $v_0 = v_1 sin\theta + v_0 cos\theta$

 $\dot{v}_{\theta} = \dot{v}_{\theta}$

Unused text

$$\dot{\omega} = \frac{(v_1^B - v_1^A)(\dot{v}_1^B - \dot{v}_1^A) + (v_2^B - v_2^A)(\dot{v}_2^B - \dot{v}_2^A)}{l\sqrt{(v_1^B - v_1^A)^2 + (v_2^B - v_2^A)^2}} = -\frac{(v_1^B - v_1^A)}{m^A l\sqrt{(v_1^B - v_1^A)^2 + (v_2^B - v_2^A)^2}} (E \cdot e \cdot sin\theta + F_1^A)$$

$$lsin\theta = q_1^B - q_1^A \text{ or } lcos\theta.\,\omega = v_1^B - v_1^A$$

$$lcos\theta = q_2^B - q_2^A \text{ or } -lsin\theta.\,\omega = v_2^B - v_2^A$$

$$\therefore \ l^2\omega^2 = (v_1^B - v_1^A)^2 + (v_2^B - v_2^A)^2$$

$$l^2\omega.\,\dot{\omega} = (v_1^B - v_1^A)(\dot{v}_1^B - \dot{v}_1^A) + (v_2^B - v_2^A)(\dot{v}_2^B - \dot{v}_2^A)$$

where $\omega = \sqrt{(v_1^B - v_1^A)^2 + (v_2^B - v_2^A)^2}/l$

$$\therefore \ \dot{\omega} = \frac{(v_1^B - v_1^A)(\dot{v}_1^B - \dot{v}_1^A) + (v_2^B - v_2^A)(\dot{v}_2^B - \dot{v}_2^A)}{l\sqrt{(v_1^B - v_1^A)^2 + (v_2^B - v_2^A)^2}}$$

$$\dot{\omega}^{B} = \left\{ \left(m^{A} + m^{B} \right) sin\theta \cdot g - cos\theta \cdot F^{A} - lm^{B} sin\theta cos\theta \left(\omega^{B} \right)^{2} \right\} / \left\{ \frac{\left(m^{A} + m^{B} \right) J}{l \cdot m^{B}} + l \left(m^{A} + m^{B} sin^{2} \theta \right) \right\}$$

$$s^{-2} = J \cdot s^{2} \cdot m \cdot s^{-2} - J \cdot m^{-1} - m \cdot J \cdot s^{2} \cdot m^{-2} s^{-2} / J \cdot s^{2} \cdot rad^{-1} \cdot m^{-1}$$

$$m \cdot J \cdot s^{2} \cdot m^{-2}$$

$$RHS = J.m^{-1} / J.s^2.m^{-1} = s^{-2}$$

+

$$\left\{\frac{\mu_1^A}{m^B} + lsin\theta \cdot \left(\boldsymbol{\omega}^B\right)^2\right\} sin\theta + \left\{\frac{\mu_2^A}{m^B} - g + lcos\theta \cdot \left(\boldsymbol{\omega}^B\right)^2\right\} cos\theta = 0$$

or $\mu_1^A sin\theta + \mu_2^A cos\theta + l \cdot m^B \left(\boldsymbol{\omega}^B\right)^2 = gcos\theta$ (5)

Equations 1..6 are solved for v_1^A , v_1^B , v_2^B , ω^B , μ_1^A , μ_2^A

or
$$\dot{\omega}^B = \left\{\frac{\mu_1^A}{m^B} + lsin\theta \cdot \left(\omega^B\right)^2\right\} / lcos\theta$$

or $\dot{\omega}^B = -\left\{\frac{\mu_2^A}{m^B} - g + lcos\theta \cdot \left(\omega^B\right)^2\right\} / lsin\theta$
 $\theta = \sin^{-1}\left(\frac{r\omega^2 - \dot{v}_r}{g}\right); \quad r = \frac{g.sin\theta + \dot{v}_r}{\omega^2}$

difference in the truss angles on either side of the joint times a torsional stiffness term gives rise to a moment that is generated by the forces on those trusses. E.g. if joint B is stiff, $M^B = \kappa(\theta^{BC} - \theta^{AB})$ and the change in angle can be made arbitrarily small by making κ large. For truss AB: $M^{AB} = \mu_1^A (q_2^A - q_2^B) - \mu_2^A (q_1^A - q_1^B)$, and for truss BC: $M^{CB} = \mu_1^C (q_2^C - q_2^B) - \mu_2^C (q_1^C - q_1^B)$.

5. Control systems

 μ is now either **mechanical force** (*J.m*⁻¹) or **mechanical torque** (*J.rad*⁻¹) and v is **velocity** or displacement rate \dot{q} (*m.s*⁻¹) or angular velocity (*rad.s*⁻¹). In both cases the product μ . v is power (*J.s*⁻¹).

Examples:

5.1 PID controller

5.2 PID control of FE model of inverted pendulum with position & velocity feedback
5.1 PID controller

Consider a PID control system G_C which generates an output force μ^e from a position error q^e .

The force μ^e operates on a mechanical system G_P to generate the position q^p , which is subtracted from the desired input position q^i to give $q^e = q^i - q^p$.

The PID controller is $\mu^e = k_p q^e + k_d v^e + k_i \eta^e$,

or, in the Laplace domain, $\mu^e = G_C(s)q^e$ where $G_C(s) = \left(k_p + k_d s + \frac{k_i}{s}\right)$

where k_p is gain on proportional control with error signal q^e

- k_d is gain on derivative control with $oldsymbol{v}^e=\dot{oldsymbol{q}}^e$
- $k_i\,$ is gain on integral control with $oldsymbol{\eta}^e=\int_0^toldsymbol{q}^edt\,$ or $\dot{oldsymbol{\eta}}^e=oldsymbol{q}^e$

Note that $G_C(s) = \left(k_p + k_d s + \frac{k_i}{s}\right) = K\left(\frac{s^2 + 2\zeta_0 \omega_0 s + \omega_0^2}{s}\right)$, where $K = k_d$, $2\zeta_0 \omega_0 = \frac{k_p}{k_d}$, $\omega_0^2 = \frac{k_i}{k_d}$ and $\zeta_0 \le 1$; or $k_d = K$, $k_p = 2K\zeta_0 \omega_0$, $k_i = K\omega_0^2$

This expression has a pole at the origin and two complex zeros

 $s = -\zeta_0 \omega_0 \pm \sqrt{(\zeta_0 \omega_0)^2 - (\omega_0)^2} = -\zeta_0 \omega_0 \pm i \omega_0 \sqrt{1 - \zeta_0^2}.$

The transfer function for the whole system is $\frac{q^p}{q^i} = \frac{G_C G_P}{1+G_C G_P} = \frac{KG}{1+KG}$, where *K* is the open loop gain and *KG* is the open loop transfer function.

5.2 PID control of FE model of inverted pendulum with position & velocity feedback

$$G_{C}(s) = K \left(\frac{s^{2} + 2\zeta_{0}\omega_{0}s + \omega_{0}^{2}}{s} \right)$$

$$(s.m^{A} + R)\boldsymbol{v}_{1}^{A} = \boldsymbol{\mu}^{truss}.sin\theta + \boldsymbol{\mu}^{\boldsymbol{e}} \qquad (s.m^{A} + R)\boldsymbol{v}_{1}^{A} + (s.m^{B} + R)\boldsymbol{v}_{1}^{B} = \boldsymbol{\mu}^{\boldsymbol{e}}$$

$$(s.m^{B} + R)\boldsymbol{v}_{1}^{B} = -(\boldsymbol{\mu}^{truss}.sin\theta) \qquad (s.m^{B} + R)\boldsymbol{v}_{2}^{B} = -(\boldsymbol{\mu}^{truss}.cos\theta + m^{B}\boldsymbol{g})$$

$$(s.m^{B} + R)\boldsymbol{v}_{2}^{B} = -(\boldsymbol{\mu}^{truss}.cos\theta + m^{B}\boldsymbol{g})$$

var t: second {init: 0}; var t 0: second {init: 1}; var eta e: ms {init: 0}; var q e: metre; var v 0: m per s {init: 1}; varv e: m per s; varu e: J per m; vark p: J per m2; vark d: Js per m2; vark i: J per m2s; var gain: Js per m2 {init: 100}; var zeta 0: dimensionless {init: 0.8}; var omega 0: per s {init: 100}; var PI: dimensionless {init: 3.141592}; var theta: dimensionless; var theta1: dimensionless; var theta2: dimensionless; var costheta: dimensionless; var sintheta: dimensionless; var g: m per s2 {init: 9.81}; var | AB 0: metre {init: 1}; var | AB: metre; var E: J per m {init: 100}; var R: Js per m {init: 10}; var RR: Js per m2 {init: 1}; var strain AB: dimensionless; var strain rate AB: per s; var m A: Js2 per m2 {init: 1}; var m B: Js2 per m2 {init: 0.00001}; var F A: J per m {init: 0}; varu A 1: J per m; varu A 2: J per m; var u truss AB: J per m; var q_i_1: metre {init: 0}; varv A 1: m per s {init: 0}; var v A 2: m_per_s {init: 0}; var v B 1: m per s {init: 0}; var v B 2: m per s {init: 0}; var x AB: metre; var y AB: metre; var q A 1: metre {init: 0}; var q A 2: metre {init: 0}; var q B 1: metre {init: 0.1}; var q B 2: metre {init: 0.995};

```
k d = gain;
k p = 2{dimensionless}*gain*zeta 0*omega 0;
k i = gain*sqr(omega 0);
q_e = q_B_1 - q_A_1;
v = v B 1 - v A 1;
ode(eta_e, t) = q_e;
\mathbf{u} = \mathbf{k} p^* \mathbf{q} e + \mathbf{k} d^* \mathbf{v} e + \mathbf{k} i^* eta e;
x AB = q B 1 - q A 1;
y AB = q B 2 - q A 2;
I_AB = sqrt(sqr(x_AB)+sqr(y_AB));
sintheta = x_AB/I_AB;
costheta = y AB/I AB;
strain AB = (I AB - I AB 0)/I AB 0;
strain rate AB = (x AB^*(v B 1 - v A 1) + y AB^*(v B 2 - v A 2))/(I AB^*I AB 0);
u truss AB = E*strain AB + R*strain rate AB;
u A 1 = u truss AB*sintheta;
u A 2 = u truss AB*costheta;
ode(\mathbf{v} \mathbf{A} \mathbf{1}, t) = (\mathbf{u} \mathbf{truss} \mathbf{AB}^* sintheta - RR^* \mathbf{v} \mathbf{A} \mathbf{1} + \mathbf{u} \mathbf{e})/m \mathbf{A};
ode(\mathbf{v} \ \mathbf{B} \ \mathbf{1}, t) = (-\mathbf{u} \ \mathbf{truss} \ \mathbf{AB}^* sintheta - RR^* \mathbf{v} \ \mathbf{B} \ \mathbf{1})/m \ B;
ode(v B 2, t) = -u truss AB^* costheta/m B - g;
ode(q A 1, t) = v A 1;
ode(q_A_2, t) = v_A_2;
ode(q_B_1, t) = v_B_1;
ode(q B 2, t) = v B 2;
theta1 = asin(sintheta)*180{dimensionless}/PI;
theta2 = acos(costheta)*180{dimensionless}/PI;
theta = theta1:
```

🦪 OpenCOR										- C	- X
<u>File</u> <u>View</u> <u>Tools</u> <u>H</u> elp											
PID - Pendulum q fdbk.cellml	DID - Pend	dulum q fdbk.sedml 🖾									
			ו •• •	θ (degrees)				· · · · · · · · · · · · · · · · · · ·			
Starting 0		2									
Starting 0 s	econd		-2								
Point int 0.001 s	econd		-4-1								
<	>		>	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4
> Solvers		0.15	q_1^A (m)	<u> </u>		Č.					
	Parameters		0.1								
Property	Value	Unit	^ U.US								
Sq_A_1	0.1003.	metre	0-	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4
R q_A_1'	0.0095.	metre/secon	8-1888886			0110		0120		0100	
S q_A_2	0	metre	8:1888883	$\langle q_1^B(m) \rangle$							
Q_A_2'	0	metre/secon	8:18888887								
Q_B_1	0.1000.	metre	0.0999999								
	-3.066	. metre/secon	(0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4
Q_B_2	-5 471	metre/secon	1.000012								
	-0.000	metre	1:000008								
Q q i 1	0	metre	= 1:888882	truss length (m)							
C R	10	Js_per_m	14								
🖉 💽 RR	1	Js_per_m2	(500)	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4 s
🍟 🕢 sintheta	-0.000	. dimensionle:	1,000	u _e (J.m⁻¹)							Jatio
s A strain_AB	-7.314	. dimensionle:	~`50 <u>0</u>		\sim						
🛓 🛕 strain_rate_	AB -2.497	. per_s	-500								a a
t 💟 t	0	second	-1.000 -								3
t_0	1	second	0.1-	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4
theta	-0.017	. dimensionle:	0.05	q_e (m)							
theta?	-0.017	dimensionle:	0								
	3.0556	l ner m	-0.05		_						
	-9.811	. J per m			0.1	0.15	0.2	0.25	0.2	0.25	0.4
A u e	-4.599	. J per m		0.05	0.1	0.15	0.2	0.25	0.5	0.55	0.4
A u_truss_AB	-9.811	. J_per_m	5		\frown						
⊙ v_0	1	m_per_s	-5-								
S v_A_1	0.0095.	m_per_s	-10	v _e (m.s⁻¹)							
😯 v_A_1'	-4.609	. m_per_s/seco	10	0.05	01	0.15	0.2	0.25	0.3	0.35	04
🕑 v_A_2	0	m_per_s	8.8888	\wedge	0.1	0.13	0.2	0.20	0.0	0.55	0.1
S v_B_1	-3.066	. m_per_s	8:8883	$\eta_e(ms)$							
V_B_1'	1.1264.	m_per_s/seco	-0.0002								
V_B_2	-5.471	. m_per_s	-8:8884								
<		>	(0.05	0.1	0.15	0.2	0.25	0.3	0.35	· · · ·
C:\Users\phun025\Documen	ts\CMISS\OpenCO	R\Models\Bond grap	h models\BG tutorial	CellML & SED-ML files\Chapter 3 Con	trol systems\PID - P	endulum q fdbk.sedml					

: (Users (phun025) Oocciments (CMISS (0 Runtime: valid, Model type: ODE. Simulation time: 0.002 s using CVODE. Simulation time: 0.002 s using CVODE. Simulation time: 0.002 s using CVODE. Simulation time: 0.002 s using CVODE.

6. Fluid mechanics

 μ is now energy density or pressure (J.m⁻³) and v is fluid volume flow (m³.s⁻¹). Product μ . v is power (J.s⁻¹).

Examples:

- 6.1 Straight tube
- 6.2 Branching blood vessel
- 6.3 Symmetric branching tree
- 6.4 Circulation system
- 6.5 Renal circulation module
- 6.6 Vasa vasorum

6.1 Straight tube

Elastic storage (e.g. a compliant blood vessel) is $q = \int v dt$ where v is the net flow into the elastic segment and q (m^3) is the excess volume caused by dilation of that segment. For flow through a vessel of length l, radius r, and wall thickness h, the elasticity of the wall assuming a linear elastic material with modulus E, is $\frac{Eh}{2\pi r^3 l}$, inertial storage is $L\dot{v}$, where $L = \frac{\rho l}{\pi r^2} (Js^2m^{-6})$, and the constitutive relation for resistance or dissipation is given by the Poiseuille relation: $\Delta \mu = R. v$, where $R = \frac{8\eta l}{\pi r^4} (Js. m^{-6})$ is the resistance to axial flow (of viscosity η).

There are 11 state variables $(q_2, v_1 - v_3, \mu_1 - \mu_7)$ and 9 eqns. Two boundary conditions are needed e.g. specify upstream flow v_1 and downstream pressure μ_3 .

CellML tutorial model fluid mechanics 1

var R3: Js_per_m6 {init: 1}; var I1: Js2_per_m6 {init: 1}; var I3: Js2_per_m6 {init: 1};

ode(q2, t) = v2; v1 = v2 + v3; u1= u2 + u4 + u5; u2= u3 + u6 + u7;

u4 = R1*v1; u2 = p0*exp(k3*q2); u6 = R3*v3; ode(v1, t) = u5/l1; ode(v3, t) = u7/l3;

CellML tutorial model fluid mechanics 2

6.3 A symmetric branching tree

Note: Require $n_2 = n_4$ to ensure arterial inflow equals venous outflow.

Total $q_{tot} = q_1 + q_2 + n_2 q_3 + q_4 + q_5$

 $p_{in} = \mu_0 v_1$ is the total power entering the system

 $p_{out} = \mu_6 v_6$ is the total power leaving the system

 $p_{sys} = \mu_0 v_1 - \mu_6 v_6$ is the total power absorbed by the system

This should equal the rate of dissipative energy loss $p_{dis} = R_1 v_1^2 + R_2 v_2^2 + R_3 v_3^2 + R_4 v_4^2 + R_5 v_5^2 + R_6 v_6^2$

ode(q1, t) = v1-v2; ode(q2, t) = v2-n2*v3; ode(q3, t) = v3-v4; ode(q4, t) = n4*v4-v5; ode(q5, t) = v5-v6; q art = q1+q2; q_cap = n2*q3; q ven = q4+q5; q tot = q art + q cap + q ven; **u1** = E1*q1; u2 = E2*q2; u3 = E3*q3; u4 = E4*q4; u5 = E5*q5; ode(v1, t) = (u0-u1-R1*v1)/L1; ode(v2, t) = (u1-u2-R2*v2)/L2; ode(v3, t) = (u2-u3-R3*v3)/L3; ode(v4, t) = (u3-u4-R4*v4)/L4;ode(v5, t) = (u4-u5-R5*v5)/L5;ode(v6, t) = (u5-u6-R6*v6)/L6; **u6=**0;

6.3 <u>A symmetric branching tree – new version with p</u>

Note: Require $n_2 = n_4$ to ensure arterial inflow equals venous outflow.

Total $q_{tot} = q_1 + q_2 + n_2 q_3 + q_4 + q_5$

 $p_{in} = \mu_0 v_1$ is the total power entering the system

 $p_{out} = \mu_6 v_6$ is the total power leaving the system

 $p_{sys} = \mu_0 v_1 - \mu_6 v_6$ is the total power absorbed by the system

This should equal the rate of dissipative energy loss $p_{dis} = R_1 v_1^2 + R_2 v_2^2 + R_3 v_3^2 + R_4 v_4^2 + R_5 v_5^2 + R_6 v_6^2$

$$\dot{\boldsymbol{v}}_1 = (\boldsymbol{\mu}_0 - \boldsymbol{\mu}_1 - \boldsymbol{R}_1 \boldsymbol{v}_1)/L_1$$

CellML tutorial model fluid mechanics 4

Simple model of the circulation system

CellML tutorial model fluid mechanics 5

30 eqns in 30 variables.

6.4 A model of the circulation system

CellML tutorial model fluid mechanics 5

Equations for circulation model

μ_1	=	E_1	. q 1	ġ1	=	v_{20}	-	v ₁			
μ_2	=	E_2	. q 2	\dot{q}_2	=	v ₁	—	v_2	—	v_5	
μ_3	=	E_3	. q 3	q 3	=	\boldsymbol{v}_2	—	v_3	—	v_5	
μ_4	=	E_4	. q 4	ġ₄	=	v_5	_	v 6	—	v 9 -	v ₁₀
μ_5	=	E_5	. q 5	\dot{q}_5	=	v 6	—	v_7	—	v 8	
μ_6	=	E_6	. q 6	q 6	=	v 7	—	v ₁₁	—	v ₁₂	
μ_7	=	E_7	. q 7	q 7	=	v 8	—	v ₁₀			
μ ₈	=	E_8	. q 8	q 8	=	v 3	+	v 4	—	v ₁₃	
μ9	=	E_9	. q 9	q 9	=	v ₁₁	+	v ₁₂	-	v ₁₄	
μ_{10}	=	E_{10}	. q ₁₀	\dot{q}_{10}	=	v ₁₀	+	v ₁₄	—	v ₁₅	
μ_{11}	=	E_{11}	. <i>q</i> ₁₁	\dot{q}_{11}	=	v 9	+	v 15	-	v ₁₆	
μ_{12}	=	E_{12}	. q ₁₂	q ₁₂	=	v ₁₃	+	v ₁₆	—	v ₁₇	
μ_{13}	=	E_{13}	3. q ₁₃	q ₁₃	=	v ₁₇	—	v ₁₈			
μ ₁₄	=	E_{14}	. <i>q</i> ₁₄	q _14	=	v ₁₈	—	v 19			
μ_{15}	=	E_{15}	s. q 15	\dot{q}_{15}	=	v 19	_	v ₂₀			

$I_1 \dot{\boldsymbol{v}}_1 = \boldsymbol{\mu}_1 - \boldsymbol{\mu}_2 - R_1 \boldsymbol{v}_1$	$\dot{\boldsymbol{v}}_1 = \boldsymbol{a}_1$
$I_2 \dot{\boldsymbol{v}}_2 = \boldsymbol{\mu}_2 - \boldsymbol{\mu}_3 - R_2 \boldsymbol{v}_2$	$v_1 = (\mu_1 - \mu_2 - I_1 a_1)/R_1$
$I_3 \dot{v}_3 = \mu_3 - \mu_8 - R_3 v_3$	
$I_4 \dot{\boldsymbol{v}}_4 = \boldsymbol{\mu}_3 - \boldsymbol{\mu}_8 - R_4 \boldsymbol{v}_4$	
$I_5 \dot{v}_5 = \mu_2 - \mu_4 - R_5 v_5$	
$I_6 \dot{v}_6 = \mu_4 - \mu_5 - R_6 v_6$	
$I_7 \dot{v}_7 = \mu_5 - \mu_6 - R_7 v_7$	
$I_8 \dot{v}_8 = \mu_5 - \mu_7 - R_8 v_8$	
$I_9 \dot{v}_9 = \mu_4 - \mu_{11} - R_9 v_9$	
$I_{10}\dot{v}_{10} = \mu_4 + \mu_7 - \mu_{10} - R_{10}$	v_{10}
$I_{11}\dot{v}_{11} = \mu_6 - \mu_9 - R_{11}v_{11}$	
$I_{12}\dot{v}_{12} = \mu_6 - \mu_9 - R_{12}v_{12}$	
$I_{13}\dot{v}_{13} = \mu_8 - \mu_{12} - R_{13}v_{13}$	
$I_{14}\dot{v}_{14} = \mu_9 - \mu_{10} - R_{14}v_{14}$	
$I_{15}\dot{v}_{15} = \mu_{10} - \mu_{11} - R_{15}v_{15}$	
$I_{16}\dot{v}_{16} = \mu_{11} - \mu_{12} - R_{16}v_{16}$	
$I_{17}\dot{\boldsymbol{v}}_{17} = \boldsymbol{\mu}_{12} - \boldsymbol{\mu}_{13} - R_{17}\boldsymbol{v}_{17}$	
$I_{18}\dot{v}_{18} = \mu_{13} - \mu_{14} - R_{18}v_{18}$	
$I_{19}\dot{v}_{19} = \mu_{14} - \mu_{15} - R_{19}v_{19}$	
$I_{20}\dot{\boldsymbol{v}}_{20} = \boldsymbol{\mu}_{15} - \boldsymbol{\mu}_{1} - R_{20}\boldsymbol{v}_{20}$	
	$I_{1}\dot{v}_{1} = \mu_{1} - \mu_{2} - R_{1}v_{1}$ $I_{2}\dot{v}_{2} = \mu_{2} - \mu_{3} - R_{2}v_{2}$ $I_{3}\dot{v}_{3} = \mu_{3} - \mu_{8} - R_{3}v_{3}$ $I_{4}\dot{v}_{4} = \mu_{3} - \mu_{8} - R_{4}v_{4}$ $I_{5}\dot{v}_{5} = \mu_{2} - \mu_{4} - R_{5}v_{5}$ $I_{6}\dot{v}_{6} = \mu_{4} - \mu_{5} - R_{6}v_{6}$ $I_{7}\dot{v}_{7} = \mu_{5} - \mu_{6} - R_{7}v_{7}$ $I_{8}\dot{v}_{8} = \mu_{5} - \mu_{7} - R_{8}v_{8}$ $I_{9}\dot{v}_{9} = \mu_{4} - \mu_{11} - R_{9}v_{9}$ $I_{10}\dot{v}_{10} = \mu_{4} + \mu_{7} - \mu_{10} - R_{10}$ $I_{11}\dot{v}_{11} = \mu_{6} - \mu_{9} - R_{11}v_{11}$ $I_{12}\dot{v}_{12} = \mu_{6} - \mu_{9} - R_{12}v_{12}$ $I_{13}\dot{v}_{13} = \mu_{8} - \mu_{12} - R_{13}v_{13}$ $I_{14}\dot{v}_{14} = \mu_{9} - \mu_{10} - R_{14}v_{14}$ $I_{15}\dot{v}_{15} = \mu_{10} - \mu_{11} - R_{15}v_{15}$ $I_{16}\dot{v}_{16} = \mu_{11} - \mu_{12} - R_{16}v_{16}$ $I_{17}\dot{v}_{17} = \mu_{12} - \mu_{13} - R_{17}v_{17}$ $I_{18}\dot{v}_{18} = \mu_{13} - \mu_{14} - R_{18}v_{18}$ $I_{19}\dot{v}_{19} = \mu_{14} - \mu_{15} - R_{19}v_{19}$ $I_{20}\dot{v}_{20} = \mu_{15} - \mu_{1} - R_{20}v_{20}$

CellML text code in OpenCOR

u1 = E1*q1; u2 = E2*q2; u3 = E3*q3; U4 = E4*q4;

u5 = E5*q5; u6 = E6*q6; u7 = E7*q7; u8 = E8*q8; u9 = E9*q9; u10 = E10*q10; u11 = E11*q11; u12 = E12*q12; u13 = E13*q13; u14 = E14*q14; u15 = E15*q15;

ode(q1, t) = v20-v1;	
ode(q2 , t) = v1 - v2 - v5 ;	
ode(q3, t) = v2 -v3 -v5;	
ode(q4, t) = v5 -v6- v9 -v10	;
ode(q5, t) = v6 -v7 -v8;	
ode(q6, t) = v7 -v11-v12;	
ode(q7, t) = v8 -v10;	
ode(q8, t) = v3 +v4 -v13;	
ode(q9, t) = v11+v12-v14;	
ode(q10 , t) = v10+v14-v15 ;	
ode(q11, t) = v9 +v15-v16;	
ode(q12 , t) = v13+v16-v17 ;	
ode(q13 , t) = v17-v18 ;	
ode(q14 , t) = v18-v19 ;	
ode(q15 , t) = v19-v20 ;	
ode(v1 , t) = (u1-u2 -R1* v1)/I1	;
ode(v2, t) = (u2-u3 -R2*v2)/l2	;
ode(v3 , t) = (u3-u8 -R3* v3)/I3	;
ode(v4 , t) = (u3-u8 -R4* v4)/I4	;
ode(v5 , t) = (u2-u4 -R5* v5)/I5	;;
ode(v6 , t) = (u4-u5 -R6* v6)/I6	;
ode(v7 , t) = (u5-u6 -R7* v7)/I7	';
ode(v8 , t) = (u5-u7 -R8* v8)/I8	;;
ode(v9 , t) = (u4-u11 -R9* v9)/I9);
ode(v10 , t) = (u4+u7-u10 -R10'	* v10)/I10;
ode(v11 , t) = (u6-u9 -R11* v 2	11)/l11;
ode(v12 , t) = (u6-u9 -R12* v 2	12)/l12;
ode(v13 , t) = (u8-u12 -R13* v1	I3)/I13;
ode(v14 , t) = (u9-u10 -R14* v1	4)/I14;
ode(v15 , t) = (u10-u11 -R15* v 1	L5)/I15;
ode(v16 , t) = (u11-u12 -R16* v 1	<mark>l6</mark>)/l16;
ode(v17 , t) = (u12-u13 -R17* v 1	L7)/I17;
ode(v18 , t) = (u13-u14 -R18* v 1	<mark>L8</mark>)/I18;
ode(v19 , t) = (u14-u15 -R19* v 1	L9)/I19;
ode(v20, t) = (u15-u1 -R20*v2	2 0)/120;

6.5 Renal circulation module

 n_8

 $#afferents = #efferents = n_1 n_2 n_3 n_4 n_5$

#glomeruli = $n_1n_2n_3n_4n_5n_6$; e. $g.n_i = 3 \Rightarrow 3^6 = 729$; and $4^6 = 4096$; $9^6 = 531,441$

capillaries within all glomeruli $= n_1 n_2 n_3 n_4 n_5 n_6$

#capillaries within all CPCP = $n_1 n_2 n_3 n_4 n_5 n_6 n_9$

 $\boldsymbol{q}_{arterial} = \boldsymbol{q}_1 + n_1 \boldsymbol{q}_2 + n_1 n_2 \boldsymbol{q}_3 + n_1 n_2 n_3 \boldsymbol{q}_4 + n_1 n_2 n_3 n_4 \boldsymbol{q}_5 + n_1 n_2 n_3 n_4 n_5 \boldsymbol{q}_6 + n_1 n_2 n_3 n_4 n_5 n_6 \boldsymbol{q}_7 + n_1 n_2 n_3 n_4 n_5 (\boldsymbol{q}_8 + \boldsymbol{q}_9)$

 $q_{venous} = n_1 n_2 n_3 n_4 n_5 n_9 q_{11} + n_1 n_2 n_3 n_4 n_5 q_{12} + \frac{n_1 n_2 n_3 n_4 n_5}{n_{13}} q_{13} + \frac{n_1 n_2 n_3 n_4 n_5}{n_{13} n_{14}} q_{14} + \frac{n_1 n_2 n_3 n_4 n_5}{n_{13} n_{14} n_{15}} q_{15} + \frac{n_1 n_2 n_3 n_4 n_5}{n_{13} n_{14} n_{15} n_{16}} q_{16} + \frac{n_1 n_2 n_3 n_4 n_5}{n_{13} n_{14} n_{15} n_{16} n_{17}} q_{17} + q_{18}$

q_tot = q1 + n1*q2 + n2*q3 + n3*q4 + n4*q5 + n5*q6 + n6*q7 + q8 + q9 + n9*q11 + n13*q12 + n14*q13 + n15*q14 + n16*q15 + n17*q16 + q17 + q18 The constitutive relation for resistance or dissipation is given by the Poiseuille relation: $\frac{d\mu}{dx} \left(=\frac{\Delta\mu}{l}\right) = R. v$, where $R = \frac{8\eta}{\pi r^4}$ is the resistance to axial flow (of viscosity η) through a vessel of radius r.

6.5 Renal circulation module

 $q_{arterial} = q_1 + q_2 + n_2(q_3 + q_4) + n_2n_4(q_5 + q_6) + n_2n_4n_6(q_7 + q_8) + n_2n_4n_6n_8(q_9 + q_{10}) + n_2n_4n_6n_8n_{10}(q_{11} + q_{12})$

 $q_{capillary} = n_2 n_4 n_6 n_8 n_{10} (n_{12} q_{13} + q_{14} + q_{15} + q_{16} + n_{16} q_{17})$

 $q_{venous} = n_2 n_4 n_6 n_8 n_{10} \left(q_{18} + q_{19} + \frac{q_{20} + q_{21}}{n_{20}} + \frac{q_{22} + q_{23}}{n_{20} n_{22}} + \frac{q_{24} + q_{25}}{n_{20} n_{22} n_{24}} + \frac{q_{26} + q_{27}}{n_{20} n_{22} n_{24} n_{26}} \right) + q_{28} + q_{29}$

CellML tutorial model fluid mechanics 6

ode(q1, t) = v1 - v2;	u1 = E1 *q1;	ode(v1, t) = (u0 -u1 -R1 *v1)/L1;
ode(q2, t) = v2 - n2*v3;	u2 = E2 *q2;	ode(v2, t) = (u1 -u2 -R2 *v2)/L2;
ode(q3, t) = v3 - v4;	u3 = E3 *q3;	ode(v3, t) = (u2 -u3 -R3 *v3)/L3;
ode(q4, t) = v4 - n4*v5;	u4 = E4 *q4;	ode(v4, t) = (u3 -u4 -R4 *v4)/L4;
ode(q5, t) = v5 - v6;	u5 = E5 * q5 ;	ode(v5, t) = (u4 - u5 - R5 * v5)/L5;
ode(q6, t) = v6 - n6*v7;	u6 = E6 *q6;	ode(v6, t) = (u5 -u6 -R6 *v6)/L6;
ode(q7, t) = v7 - v8;	u7 = E7 *q7;	ode(v7, t) = (u6 -u7 -R7 *v7)/L7;
ode(q8, t) = v8 - n8*v9;	u8 = E8 *q8;	ode(v8, t) = (u7 -u8 -R8 *v8)/L8;
ode(q9, t) = v9 - v10;	u9 = E9 *q9;	ode(v9, t) = (u8 -u9 -R9 *v9)/L9;
ode(q10, t) = v10- n10*v11;	u10 = E10* q10 ;	ode(v10, t) = (u9 -u10-R10*v10)/L10;
ode(q11, t) = v11- v12;	u11 = E11*q11;	ode(v11, t) = (u10-u11-R11*v11)/L11;
ode(q12, t) = v12- n12*v13;	u12 = E12*q12;	ode(v12, t) = (u11-u12-R12*v12)/L12;
ode(q13, t) = v13- v14;	u13 = E13*q13;	ode(v13, t) = (u12-u13-R13*v13)/L13;
ode(q14, t) = n14*v14-v15;	u14 = E14*q14;	ode(v14 , t) = (u13-u14 -R14* v14)/L14;
ode(q15, t) = v15- v16;	u15 = E15*q15;	ode(v15 , t) = (u14-u15 -R15* v15)/L15;
ode(q16 , t) = v16 -n16* v17 ;	u16 = E16*q16;	ode(v16 , t) = (u15-u16 -R16* v16)/L16;
ode(q17, t) = v17- v18;	u17 = E17*q17;	ode(v17 , t) = (u16-u17 -R17* v17)/L17;
ode(q18 , t) = n18* v18-v19 ;	u18 = E18*q18;	ode(v18 , t) = (u17-u18 -R18* v18)/L18;
ode(q19, t) = v19 -v20;	u19 = E19*q19;	ode(v19 , t) = (u18-u19 -R19* v19)/L19;
ode(q20, t) = n20*v20-v21;	u20 = E20*q20;	ode(v20 , t) = (u19-u20 -R20* v20)/L20;
ode(q21, t) = v21 -v22;	u21 = E21*q21;	ode(v21, t) = (u20-u21-R21*v21)/L21;
ode(q22, t) = n22*v22-v23;	u22 = E22*q22;	ode(v22, t) = (u21-u22-R22*v22)/L22;
ode(q23, t) = v23 -v24;	u23 = E23*q23;	ode(v23, t) = (u22-u23-R23*v23)/L23;
ode(q24 , t) = n24* v24-v25 ;	<mark>u24</mark> = E24*q24;	ode(v24, t) = (u23-u24-R24*v24)/L24;
ode(q25 , t) = v25 - v26 ;	u25 = E25*q25;	ode(v25, t) = (u24-u25-R25*v25)/L25;
ode(q26 , t) = n26* v26-v27 ;	<mark>u26</mark> = E26*q26;	ode(v26 , t) = (u25-u26 -R26* v26)/L26;
ode(q27, t) = v27 -v28;	u27 = E27*q27;	ode(v27, t) = (u26-u27-R27*v27)/L27;
ode(q28 , t) = n28* v28-v29 ;	u28 = E28*q28;	ode(v28, t) = (u27-u28-R28*v28)/L28;
ode(q29, t) = v29 -v30;	u29 = E29*q29;	ode(v29, t) = (u28-u29-R29*v29)/L29;
	<pre>u30 = 0 {dimensionless};</pre>	ode(v30, t) = (u29-u30-R30*v30)/L30;

 $\label{eq:q_art} \textbf{q_art} = \textbf{q_1+q_2+n_2*(q_3+q_4) + n_2*n_4*(q_5+q_6) + n_2*n_4*n_6*(q_7+q_8) + n_2*n_4*n_6*n_8*(q_9+q_10) + n_2*n_4*n_6*n_8*n_10*(q_11+q_12);}$

q_cap = n2*n4*n6*n8*n10*(n12***q13** + **q14** + **q15** + **q16** + n16***q17**);

 $q_ven = n2*n4*n6*n8*n10*(q18 + q19 + (q20+q21)/n20 + (q22+q23)/(n20*n22) + (q24+q25)/(n20*n22*n24) + (q26+q27)/(n20*n22*n24*n26)) + q28+q29; q_tot = q_art + q_cap + q_ven;$

7. Biochemical systems

Examples:

7.1 Diffusion

7.2 Biochemical reactions

7.3 Simple reaction 1

7.4 Simple reaction 2

7.5 Enzyme catalysed reaction: Michaelis-Menten kinetics

7.6 Reaction with mixed stoichiometry

7.7 Membrane ion channels

7.1 Diffusion

The quantity q being transported is the **molar concentration** (mol.m⁻³) of solute dissolved in the solvent; v is therefore the **molar concentration flow rate** \dot{q} (mol.m⁻³.s⁻¹); and the driving force μ is now the **solute partial pressure** (J.m³.mol⁻¹). The product μ . v is power (J.s⁻¹).

The mass of solute must be conserved. The storage of solute as molar concentration $q = \sigma \mu$ depends on the solubility coefficient $\sigma(mol^2.m^{-6}.J^{-1})$. Alternatively $\mu = Kq$, in terms of elastance K (J.mol⁻².m⁶).

The constitutive relation between molar concentration flow rate v and driving force μ is Fick's relation $v = \kappa \mu$, where κ (mol².m⁻⁶.J⁻¹.s⁻¹) is the diffusivity [†]. κ ⁻¹ is the resistance (J.s.mol⁻².m⁶).

The bond graph model is:

[†] Einstein showed that if a spherical molecule is large compared to the solvent molecule, $\kappa = \frac{kT}{6\pi\mu a}$, where μ is the coefficient of viscosity for the solute and a is the radius of the solute molecule. See Keener & Sneyd *Mathematical Physiology* Springer-Verlag 1998, p37.

7.2 Biochemical reactions

 μ is now chemical potential (J.mol⁻¹) and v is molar flow rate \dot{q} (mol.s⁻¹). The product μ . v is power (J.s⁻¹).

For a dilute system, $\mu_1 = \mu_1^0 + RT \ln \frac{q_1}{q_{tot}}$ (J.mol⁻¹) where q_1 is the number of moles of substance 1 and q_{tot} is the total number of moles of all substances in the mixture.

Or
$$\mu_1 = RT \ln K_1 q_1$$
 (J.mol⁻¹) where $K_1 = \frac{1}{q_{tot}} e^{\mu_1^0/RT}$ (mol⁻¹) and $RT = 2.5 \ kJ.mol^{-1}$ at 25°C (298K).

Note that this is a **thermodynamic relationship** and K_1 is a thermodynamic parameter.

In the bond graph context this is a **capacitive constitutive relation** and K_1 is a constitutive parameter.

Now consider a reaction $q_1 \xleftarrow{A^f} q_2$ (where A^f and A^r are the forward & reverse affinities)

represented by a dissipative reaction component Re:

$$q_1 \xrightarrow[v_1]{\mu_1 = A^f}$$
 Re $\xrightarrow{\mu_2 = A^r} q_2$

The 'reaction rate' or molar flow is given by the Marcelin-de Donder formula:

$$\boldsymbol{v} = v^+ - v^-$$
, where $v^+ = \kappa e^{A^f/RT}$ and $v^- = \kappa e^{A^r/RT}$ and hence
 $\boldsymbol{v} = \kappa \left(e^{A^f/RT} - e^{A^r/RT} \right)$ or $\boldsymbol{v} = \kappa \left(e^{\mu_1/RT} - e^{\mu_2/RT} \right)$

Note that κ has units of *mol.s*⁻¹ and that this is an empirical **resistive (dissipative) constitutive relation**. The direction of flow is determined by the solution to ensure that the second law of thermodynamics is satisfied ($\Delta G = \Delta H - T\Delta S < 0$).

7.3 Simple reaction 1

Now consider the reaction:

$$q_1 + q_2 \xrightarrow[A_1^r]{A_1^r} q_3 + q_4$$

The Bond Graph representation is:

 $\begin{aligned} \dot{q_1} &= -v_1 & \mu_1 = RT \ln K_1 q_1 \\ \dot{q_2} &= -v_1 & \mu_2 = RT \ln K_2 q_2 \\ \dot{q_3} &= v_1 & \mu_3 = RT \ln K_3 q_3 \\ \dot{q_4} &= v_1 & \mu_4 = RT \ln K_4 q_4 \\ \\ \mu_5 &= \mu_1 + \mu_2 \\ \mu_6 &= \mu_3 + \mu_4 \\ v_1 &= \kappa_1 \left(e^{\mu_5/RT} - e^{\mu_6/RT} \right) \end{aligned}$

This gives 11 equations in the 11 variables $(q_1 - q_4, v_1, \mu_1 - \mu_6)$ with 5 parameters $(K_1 - K_4, \kappa_1)$.

Substituting for the potentials gives:

$$\boldsymbol{v}_1 = \kappa_1 \left(e^{\mu_5/RT} - e^{\mu_6/RT} \right) = \kappa_1 \left(e^{\mu_1/RT} e^{\mu_2/RT} - e^{\mu_3/RT} e^{\mu_4/RT} \right) = \kappa_1 \left(K_1 \boldsymbol{q}_1 K_2 \boldsymbol{q}_2 - K_3 \boldsymbol{q}_3 K_4 \boldsymbol{q}_4 \right)$$

Or $\dot{q_1} = -\kappa_1 K_1 K_2 q_1 q_2 + \kappa_1 K_3 K_4 q_3 q_4$, which reveals the expected 'mass-action' relationship, with forward reaction rate $A_1^f = -\kappa_1 K_1 K_2$ and reverse reaction rate $A_1^r = \kappa_1 K_3 K_4$.

At equilibrium
$$\frac{q_3q_4}{q_1q_2} = \frac{A_1^f}{A_1^r} = \frac{K_1K_2}{K_3K_4}$$

Note distinction between thermodynamic quantities K_1 .. K_4 and reaction kinetics parameter κ_1 , and the relationship between K_1 .. $K_4 \& \kappa_1$ and the experimental reaction rate constants.

CellML tutorial model biochemical systems 1

7.4 Simple reaction 2

Now consider the reaction:

$$q_1 \xrightarrow[A_1^r]{A_1^r} q_2 + q_3$$

The Bond Graph representation is:

 $\dot{q}_{1} = -v_{1} \quad \mu_{1} = RT \ln K_{1}q_{1}$ $\dot{q}_{2} = v_{1} \quad \mu_{2} = RT \ln K_{2}q_{2}$ $\dot{q}_{3} = v_{1} \quad \mu_{3} = RT \ln K_{3}q_{3}$ $\mu_{4} = \mu_{2} + \mu_{3}$ $v_{1} = \kappa_{1} \left(e^{\mu_{1}/RT} - e^{\mu_{4}/RT} \right)$

This gives 8 equations in the 8 variables $(q_1 - q_3, v_1, \mu_1 - \mu_4)$ with 4 parameters $(K_1 - K_3, \kappa_1)$.

Substituting for the potentials gives:

$$\boldsymbol{v}_1 = \kappa_1 \left(e^{\mu_1/RT} - e^{\mu_4/RT} \right) = \kappa_1 \left(e^{\mu_1/RT} - e^{\mu_2/RT} e^{\mu_3/RT} \right) = \kappa_1 \left(K_1 \boldsymbol{q}_1 - K_2 \boldsymbol{q}_2 K_3 \boldsymbol{q}_3 \right)$$

Or $v_1 = -\kappa_1 K_1 q_1 + \kappa_1 K_2 K_3 q_2 q_3$, with forward reaction rate $A_1^f = \kappa_1 K_1$ and reverse reaction rate $A_1^r = \kappa_1 K_2 K_3$.

At equilibrium $\frac{q_2q_3}{q_1} = \frac{A_1^f}{A_1^r} = \frac{K_1}{K_2K_3}$

CellML tutorial model biochemical systems 2

2	OpenCOR	-	100 C	-	Sec. 1	_	-	100		
Eil	e <u>V</u> iew <u>T</u> ools	<u>H</u> elp								
	BG #6.cellml 🔀									
					o 🐼 🐥 🕳	• • `##´ • (🔛 🖌 📑			
	▼	Simu	lation		10 -					
	Property	Value	Unit		8 =					
	Starting point	0	second		6					
	Ending point	0.1	second		4					
	Point interval	0.0001	second							
	•	III		•						
		Sol	vers			· · · · ·		<u>.</u>		
	-	Paran	ipris meters		0	0.02	0.04	0.06	0.08	0.1
	Property	Value	Unit		40 3					
	⊿ main				20					
	💽 K_q1	1	per_mol		0 =					
	🖲 K_q2	0.5	per_mol		-20 -					
ļţ	💽 K_q3	1	per_mol		40	-				Sing
ш	💽 K_q4	1	per_mol		- +					0
	🕑 K_Re1	10	mol_per_s							_
gtio	9 q1	10	mole		6 000 -	0.02	0.04	0.00	0.08	0.1
I III		-50	mole/second		4.000					
Ľ"		1 50	mole mole/second	-	2,000					
		-50	mole/second	-	0 =					
		50	mole/second		-2,000					
	G q4	0	mole		-4,000					
	R q4'	50	mole/second		-6.000 -					
	🙆 RT	2500	J_per_mol		0	0.02	0.04	0.06	0.08	0.1
	🔍 t	0	second							
	🚺 🚺	5756.4	. J_per_mol		0.0 <u>-</u>					
	🔬 u2	-1732	. J_per_mol		0.6					
	🗛 u3	-inf	J_per_mol		0.4					
	A u4	-inf	J_per_mol							
	4 u5	4023.5	. J_per_mol		0.2 -					
		-inf	J_per_mol		0 -					
		-50	mol_per_s	-	9.2	9.4		9.6	9.8	10
		-50	moi ner f	_	512					

7.5 Enzyme catalysed reaction: Michaelis-Menten kinetics

Now consider the simplest enzymatic reaction, first proposed by Henri[†] but commonly referred to as Michaelis-Menten kinetics

$$q_1 + q_2 \xrightarrow{A_1^f} q_3 \xrightarrow{A_2^f} q_2 + q_4$$

where q_1 is a substrate that binds reversibly to an enzyme q_2 to form the complex q_3 , which breaks down to regenerate the enzyme and yield a product q_4 . Note that this last step is treated as irreversible in conventional MM kinetics, since $A_2^f \gg A_2^r$.

The Bond Graph representation is:

The equations are:

i.e. 14 equations in the 14 variables ($q_1 - q_4$, $v_1 - v_4$, $\mu_1 - \mu_6$) with 6 parameters ($K_1 - K_4$, κ_1 , κ_2). [†] V. Henri. *Lois Generales de l'action des Diastases*. Hermann, 1903.

can be rearranged to eliminate flows not associated with a reaction and to eliminate the potentials,

$$\begin{array}{l} \dot{q_1} = -v_1 \\ \dot{q_2} = v_4 - v_1 \\ \dot{q_3} = v_1 - v_4 \\ \dot{q_4} = v_4 \end{array} \quad \text{Or,} \ \frac{d}{dt} \begin{bmatrix} q_1 \\ q_2 \\ q_3 \\ q_4 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ -1 & 1 \\ 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_4 \end{bmatrix} \quad \begin{array}{c} r_1 \\ r_2 \\ r_3 \\ r_4 \end{bmatrix}$$

m x *n* stoichiometry matrix for *m=4* species and *n=2* reactions

$$\mathbf{v}_{1} = \kappa_{1}(K_{1}\mathbf{q}_{1}K_{2}\mathbf{q}_{2} - K_{3}\mathbf{q}_{3}) = \kappa_{1}K_{1}K_{2}\mathbf{q}_{1}\mathbf{q}_{2} - \kappa_{1}K_{3}\mathbf{q}_{3}$$

$$\mathbf{v}_{4} = \kappa_{2}(K_{3}\mathbf{q}_{3} - K_{2}\mathbf{q}_{2}K_{4}\mathbf{q}_{4}) = \kappa_{2}K_{3}\mathbf{q}_{3} - \kappa_{2}K_{2}K_{4}\mathbf{q}_{2}\mathbf{q}_{4}$$

At equilibrium, $v_1 = v_4 = 0$ and $K_1q_1 = K_4q_4$. Note that the conservation of mass for q_2 is ensured. The reaction rate constants are therefore:

$$k_1^f = \kappa_1 K_1 K_2$$
 , $k_1^r = \kappa_1 K_3$
 $k_2^f = \kappa_2 K_3$, $k_2^r = \kappa_2 K_2 K_4$

Note consistency of units in Bond Graph equations!

Notice that $v_2 = -v_3$ and therefore the total amount of enzyme stays constant.

i.e.
$$\boldsymbol{v}_2 + \boldsymbol{v}_3 = \frac{a}{dt}(\boldsymbol{q}_2 + \boldsymbol{q}_3) = 0$$
 or $\boldsymbol{q}_2 + \boldsymbol{q}_3 = E_0$, the initial quantity of enzyme.

If we assume steady state[†] individually with $\dot{q}_2 = 0$ and $\dot{q}_3 = 0$ (i.e. a constant throughput rate $v_1 = v_4$) and also assume that the last reaction operates in the forward direction only[§] (i.e. by putting $K_4 = 0$), then

$$\boldsymbol{v}_1 = \kappa_1 K_1 K_2 \boldsymbol{q}_1 \boldsymbol{q}_2 - \kappa_1 K_3 \boldsymbol{q}_3 = \boldsymbol{v}_4 = \kappa_2 K_3 \boldsymbol{q}_3$$

Therefore

$$(\kappa_1 + \kappa_2) K_3 \boldsymbol{q}_3 = \kappa_1 K_1 K_2 \boldsymbol{q}_1 (E_0 - \boldsymbol{q}_3)$$

or

$$[(\kappa_1 + \kappa_2)K_3 + \kappa_1K_1K_2\boldsymbol{q}_1]\boldsymbol{q}_3 = \kappa_1K_1K_2E_0\boldsymbol{q}_1$$

and hence (dividing both sides by $\kappa_1 K_1 K_2$),

$$\dot{q}_4 = v_4 = \kappa_2 K_3 q_3 = \frac{\kappa_2 K_3 E_0 q_1}{k_m + q_1}$$
, where $k_m = \frac{(\kappa_1 + \kappa_2) K_3}{\kappa_1 K_1 K_2}$ is the MM constant.

v₄

 \boldsymbol{q}_1

In terms of the reaction rate constants, this becomes

$$v_4 = \frac{k_2^f E_0 q_1}{k_m + q_1}$$
, where $k_m = \frac{k_2^f + k_1^r}{k_1^f}$ $k_2^f E_0$

This is the usual Michaelis-Menten expression (see www-jmg.ch.cam.ac.uk/tools/magnus/michmenten.html).

CellML tutorial model biochemical systems 3

v3 = v1 - v4:

7.6 Reaction with mixed stoichiometry

Consider the reaction where 1 mole of methane ($q_1 = CH_4$) combines with 2 moles of oxygen ($q_2 = O_2$) to yield 1 mole of carbon dioxide ($q_3 = CO_2$) and 2 moles of water ($q_4 = H_2O$):

$$CH_4 + 2O_2 \leftrightarrows CO_2 + 2H_2O$$
 or $q_1 + 2q_2 \rightleftharpoons A_1'$ $q_3 + 2q_4$

The bond graph is

Note that power is preserved through the TF component.

 $\begin{array}{ll} \dot{q_1} = & -v_1 & \mu_1 = RT \ln K_1 q_1 & \mu_5 = \mu_1 + 2\mu_2 \\ \dot{q_2} = & -2v_1 & \mu_2 = RT \ln K_2 q_2 & \mu_6 = \mu_3 + 2\mu_4 \\ \dot{q_3} = & v_1 & \mu_3 = RT \ln K_3 q_3 \\ \dot{q_4} = & 2v_1 & \mu_4 = RT \ln K_4 q_4 \end{array}$

 $\boldsymbol{v}_1 = \kappa_1 \left(e^{\mu_5/RT} - e^{\mu_6/RT} \right) = \kappa_1 \left(K_1 \boldsymbol{q}_1 (K_2 \boldsymbol{q}_2)^2 - K_3 \boldsymbol{q}_3 (K_4 \boldsymbol{q}_4)^2 \right) = \kappa_1 K_1 K_2^2 \boldsymbol{q}_1 \boldsymbol{q}_2^2 - \kappa_1 K_3 K_4^2 \boldsymbol{q}_3 \boldsymbol{q}_4^2$

Alternatively, the 2:1 stoichiometry can be represented by:

7.7 Membrane ion channels

The equations are:

$$\dot{q}_{1} = -v_{1} \quad \mu_{1} = RT \ln K_{1}q_{1}$$

$$\dot{q}_{2} = v_{1} \quad \mu_{2} = RT \ln K_{2}q_{2}$$

$$\dot{q}_{3} = 0 \quad \mu_{3} = RT \ln(G_{pore}(\mu_{E}), G_{ion}(\mu_{E}))$$

$$\dot{q}_{E} = -v_{E} \quad \mu_{E} = Eq_{E}$$

$$\mu_{4} = \mu_{1} + \mu_{3} + zF\mu_{E}$$

$$\mu_{5} = \mu_{2} + \mu_{3}$$

$$v_{1} = \kappa_{1}(e^{\mu_{4}/RT} - e^{\mu_{5}/RT})$$

$$v_{E} = zFv_{1}$$

The gating species q_3 catalyses the conversion of extracellular species q_1 to intracellular species q_2 .

The molar flow of ions across the membrane v_1 (mol.s⁻¹) generates an electrical current $v_E = zFv_1$ (C.s⁻¹), where z is ion valence and Faraday's constant F=96.5x10³ C.mol⁻¹ relates chemical mole flux to electrical current.

Let μ_E be the voltage across the membrane, then define the chemo-electrical potential $zF\mu_E$ such that chemical power $zF\mu_E v_1$ equals electrical power $\mu_E v_E = \mu_E \cdot zFv_1$. If the charge across the membrane is q_E ($\dot{q}_E = -v_E$), then $\mu_E = Eq_E$.

Therefore
$$v_1 = \kappa_1 (e^{\mu_4/RT} - e^{\mu_5/RT}) = \kappa_1 (e^{\mu_1/RT} e^{\mu_3/RT} e^{zF\mu_E/RT} - e^{\mu_2/RT} e^{\mu_3/RT})$$

or $v_1 = \kappa_1 (K_1 q_1 e^{zF\mu_E/RT} - K_2 q_2) G_{pore}(\mu_E) \cdot G_{ion}(\mu_E)$

Note that at equilibrium $\boldsymbol{v_1} = 0$ gives $K_1 \boldsymbol{q_1} e^{zF\boldsymbol{\mu_E}/RT} = K_2 \boldsymbol{q_2}$, or $\boldsymbol{\mu_E} = \frac{RT}{zF} \ln \frac{K_2 \boldsymbol{q_2}}{K_1 \boldsymbol{q_1}}$ - the Nernst potential.
$G_{pore}(\mu_E)$ is the voltage-dependent electrical conductance of the open pore. $G_{ion}(\mu_E)$ is the proportion of open channels, governed by the channel gating variable q_3 . The gating affinity is $\mu_3 = RT \ln(G_{pore}(\mu_E), G_{ion}(\mu_E))$.

i.e. 12 eqns in the 12 variables $(q_1 - q_3, q_E, v_1, v_E, \mu_1 - \mu_5, \mu_E)$ with 4 parameters (K_1, K_2, κ_1, E) as well as $G_{pore} \& G_{ion}$.

Voltage-dependent gate. Gating charge and gating current.

A population of gates contains q_c closed gates and q_o open gates. The voltage-dependent transitions of the population $q = q_c + q_o$ between open and closed states is governed by

$$q_c \xleftarrow{\mathsf{V}} q_o$$

.. more to come

8. Cellular systems

Examples:

8.1 Acid-base physiology8.2 GI tract enterocyte8.3 Renal tubular transport8.4 Cardiac myocyte

8.1 Acid-base physiology

The formation of bicarbonate (HCO_3^-) from CO_2 by hydration is catalysed by carbonic anhydrase (CA):

$$CO_2 + H_2O \iff H_2CO_3 \stackrel{CA}{\Leftrightarrow} HCO_3^- + H^+ \qquad K_{CO_2} = \frac{[HCO_3^-][H^+]}{[CO_2]}$$

Note that the formation of carbonic acid (H_2CO_3) is slow (~15s) in the absence of CA but very fast when CA present[†]. Taking logs and using Henry's law, $[CO_2] = s. p_{CO_2}$, where s is the solubility coefficient for CO_2 in the relevant fluid, yields the Henderson-Hasselbalch equation for the CO_2/HCO_3^- buffer system:

$$pH = pK + \log \frac{[HCO_3^-]}{s.p_{CO_2}}$$
 where $pH = -\log_{10}[H^+], pK = -\log_{10}K.$

The Bond Graph diagram is:

$$q_{1} \rightarrow \text{Re1} \rightarrow v_{1}$$

$$q_{2}$$

$$q_{1} = [CO_{2}] = s. p_{CO_{2}}$$

$$q_{2} = [HCO_{3}^{-}]$$

$$q_{3} = [H^{+}] = 10^{-pH}$$

$$\dot{v}_{1} = -\kappa_{1}K_{1}q_{1} + \kappa_{1}K_{2}K_{3}q_{2}q_{3}$$

$$\dot{q}_{1} = -v_{1}$$

$$\dot{q}_{2} = v_{1}$$

$$\dot{q}_{3} = v_{1}$$

[†] Carbonated drink does not instantly degas when opened but rapidly degases in the mouth when it comes in contact with CA in saliva. § For arterial blood $pK \approx 6.1$, $[HCO_3^-] \approx 24$ mM, s = 0.03 mM/mmHg and $p_{CO_2} = 40$ mmHg, giving pH ≈ 7.4 .

Multiple weak acids and bases buffer H^+

The dissociation of cationic weak acid (BH^+) to weak base (B) is governed by the reaction

$$BH^+ \Leftrightarrow B + H^+$$
 (e.g. $NH_4^+ \Leftrightarrow NH_3 + H^+$) and at equilibrium: $K_B = \frac{[B][H^+]}{[BH^+]}$

The dissociation of uncharged weak acid (*HA*) to anionic weak base (A^-) is governed by

$$HA \Leftrightarrow A^- + H^+$$
 (e.g. $HCO_3^- \Leftrightarrow OH^- + CO_2$) and at equilibrium: $K_A = \frac{[A^-][H^+]}{[HA]}$

These reactions hold on both sides of a cell membrane, with the same equilibrium constants on both sides. The neutral species (B and HA) move freely down their concentration gradients to equilibrate at equal concentration on either side of the membrane.

The charged species (BH^+ , A^- and H^+) move down their concentration gradients (within a membrane protein channel) until equilibrating with their Nernst potentials[†]:

$$E_{BH} = \frac{RT}{F} \ln \frac{[BH^+]_o}{[BH^+]_i}, \quad E_A = \frac{RT}{F} \ln \frac{[A^-]_o}{[A^-]_i}, \quad E_H = \frac{RT}{F} \ln \frac{[H^+]_o}{[H^+]_i}$$

When the reaction $BH^+ \Leftrightarrow B + H^+$ is in equilibrium on both sides of the membrane, and both K_B and [B] are the same on both sides (free permeation of the uncharged molecule),

$$K_B = \frac{[B][H^+]_o}{[BH^+]_o} = \frac{[B][H^+]_i}{[BH^+]_i} \text{ or } \frac{[H^+]_o}{[H^+]_i} = \frac{[BH^+]_o}{[BH^+]_i} \quad \therefore E_{BH} = E_H$$

Similarly, when the reaction $HA \Leftrightarrow A^- + H^+$ is in equilibrium, and $[HA]_0 = [HA]_i = [HA]_i$,

$$K_A = \frac{[A^-]_o[H^+]_o}{[HA]} = \frac{[A^-]_i[H^+]_i}{[HA]} \text{ or } \frac{[A^-]_o}{[A^-]_i} = \frac{[H^+]_i}{[H^+]_o} \therefore E_A = -E_H$$

[†] *R*≈8.4 J.mol⁻¹.K⁻¹ and *F*≈0.96x10⁵ C.mol⁻¹, therefore at *T*=298K (25°C), *RT*≈2.5kJ.mol⁻¹ and *RT/F*≈25mV.

Modelling transmembrane fluxes with bond graphs

For transmembrane fluxes, we let q have units mol.m⁻³ (molar concentration) and v have units mol.m⁻².s⁻¹ (flux per unit membrane area). A surface area to volume ratio ρ (m^{-1}) is used to link membrane fluxes with intracellular volume fluxes)

The flux from passive diffusion is $v = \kappa(q_1 - q_2)$, where κ (*m.s*⁻¹) is the permeability coefficient. Applying this constitutive relation to the two uncharged species HA and B gives

$$\boldsymbol{v}_{1}^{HA} = \kappa_{\boldsymbol{v}1} \left(\boldsymbol{q}_{1}^{HA_{o}} - \boldsymbol{q}_{2}^{HA_{i}} \right)$$
 and $\boldsymbol{v}_{6}^{B} = \kappa_{\boldsymbol{v}6} \left(\boldsymbol{q}_{7}^{B_{i}} - \boldsymbol{q}_{8}^{B_{o}} \right)$

Membrane voltage μ_E and RT/zF both have units J/C (or Volts). We define a quantity $\varepsilon = zF\mu_F/RT$ as a dimensionless membrane potential. Solution of the 1D Nernst-Planck equation for an ion channel pore gives the molar flow of ions passing through the channel as

$$\boldsymbol{v} = \kappa_{\varepsilon} \boldsymbol{\varepsilon} \cdot \frac{q_1 - q_2 \cdot e^{-\varepsilon}}{1 - e^{-\varepsilon}}$$
 where $\kappa_{\varepsilon} (m.s^{-1})$ is the channel permeability.

Applying this Goldman-Hodgkin-Katz (GHK) constitutive relation to the 3 charged species H^+ , BH^+ and A^- gives

$$\boldsymbol{v}_{3}^{A^{-}} = \kappa_{v3}.\boldsymbol{\varepsilon}.\frac{q_{3}^{A_{i}^{-}} - q_{4}^{A_{0}^{-}}.\boldsymbol{\varepsilon}^{-\boldsymbol{\varepsilon}}}{1 - \boldsymbol{\varepsilon}^{-\boldsymbol{\varepsilon}}}, \quad \boldsymbol{v}_{4}^{BH^{+}} = \kappa_{v4}.\boldsymbol{\varepsilon}.\frac{q_{5}^{BH_{0}^{+}} - q_{6}^{BH_{i}^{+}}.\boldsymbol{\varepsilon}^{-\boldsymbol{\varepsilon}}}{1 - \boldsymbol{\varepsilon}^{-\boldsymbol{\varepsilon}}}, \quad \boldsymbol{v}_{7}^{H^{+}} = \kappa_{v7}.\boldsymbol{\varepsilon}.\frac{q_{9}^{H_{i}^{+}} - q_{10}^{H_{0}^{+}}.\boldsymbol{\varepsilon}^{-\boldsymbol{\varepsilon}}}{1 - \boldsymbol{\varepsilon}^{-\boldsymbol{\varepsilon}}}$$

The weak acid and base reactions within the cell are:

$$HA \Leftrightarrow A^- + H^+ \text{ and } BH^+ \Leftrightarrow B + H^+$$

ere $\boldsymbol{v}_{a}^{HA_i} = \kappa_{ua} \left(K_a \boldsymbol{q}_{a}^{HA_i} - K_a K_a \boldsymbol{q}_{a}^{A_i^-} \boldsymbol{q}_{a}^{H_i^+} \right)$

Note that $\kappa_{\nu 2} \& \kappa_{\nu 5}$, and $\boldsymbol{v}_2 \& \boldsymbol{v}_5$, all have units *mol.m*⁻³.*s*⁻¹.

Bond graph model for intracellular pH regulation

The conservation relations are:

 $\dot{q}_{1}^{HA_{o}} = -v_{1}^{HA}$ $\dot{q}_{2}^{HA_{i}} = v_{1}^{HA} - v_{2}^{HA}$ $\dot{q}_{3}^{A_{i}^{-}} = v_{2}^{HA} - v_{3}^{A^{-}}$ $\dot{q}_{4}^{A_{o}^{-}} = v_{3}^{A^{-}}$ $\dot{q}_{4}^{BH_{o}^{+}} = -v_{4}^{BH^{+}}$ $\dot{q}_{6}^{BH_{o}^{+}} = v_{4}^{BH^{+}} - v_{5}^{BH^{+}}$ $\dot{q}_{6}^{B_{i}} = v_{5}^{BH^{+}} - v_{6}^{B}$ $\dot{q}_{8}^{B_{o}} = v_{6}^{B}$ $\dot{q}_{9}^{H_{i}^{+}} = v_{2}^{HA} + v_{5}^{BH^{+}} - v_{7}^{H^{+}}$ $\dot{q}_{10}^{H_{o}^{+}} = v_{7}^{H^{+}}$

CellML tutorial model cellular systems 1

// State variables	// Constitutive parameters	// Conservation laws			
var q1 : mM {init: 1};	<pre>var K_q1 : per_mM {init: 20};</pre>	ode(q1 , t) = - v1 ;			
var q2 : mM {init: 0};	<pre>var K_q2 : per_mM {init: 20};</pre>	ode(q2,t) = v1 - v2;			
var q3 : mM {init: 1};	var K_q3 : per_mM {init: 20};	ode(q3, t) = v2 - v3;			
var q4 : mM {init: 0};	<pre>var K_q4 : per_mM {init: 20};</pre>	ode(q4 , t) = v3;			
var q5 : mM {init: 0};	<pre>var K_q5 : per_mM {init: 20};</pre>	ode(q5, t) = -v4;			
var q6 : mM {init: 1};	<pre>var K_q6 : per_mM {init: 20};</pre>	ode(q6 , t) = v4 - v5 ;			
var q7 : mM {init: 0};	var K_q7 : per_mM {init: 20};	ode(q7 , t) = v5 - v6;			
var q8 : mM {init: 1};	var K_q8 : per_mM {init: 20};	ode(q8 , t) = v6 ;			
var q9 : mM {init: 1};	var K_q9 : per_mM {init: 20};	ode(q9 , t) = v2 + v5 - v7;			
var q10 : mM {init: 0};	var K_q10: per_mM {init: 20};	ode(q10 , t) = v7 ;			
		// Constitutive relations			
var v1 : mM_per_s;	<pre>var P_v1 : m_per_s {init: 1};</pre>	v1 = P_v1*rho*(q1-q2);			
var v2:mM_per_s;	<pre>var K_v2 : mM_per_s {init: 1};</pre>	v2 = K_v2*(K_q2*q2-K_q3*q3*K_q9*q9);			
var v3 : mM_per_s;	var P_v3 : m_per_s {init: 1};	v3 = P_v3*rho*e1*(q3-q4*exp(-e1))/(1-exp(-e1));			
<pre>var v4 : mM_per_s;</pre>	var P_v4 : m_per_s {init: 1};	v4 = P_v4*rho* <mark>e1</mark> *(q5-q6*exp(-e1))/(1-exp(-e1)) ;			
var v5 : mM_per_s;	<pre>var K_v5 : mM_per_s {init: 1};</pre>	v5 = K_v5*(K_q6*q6-K_q7*q7*K_q9*q9);			
var v6 : mM_per_s;	var P_v6 : m_per_s {init: 1};	v6 = P_v6*rho*(q7-q8);			
var v7 : mM_per_s;	var P_v7 : m_per_s {init: 1};	v7 = P_v7*rho*e1*(q9-q10*exp(-e1))/(1-exp(-e1));			

// Membrane parameters

var F/RT : C_per_J {init: 0.025}; var u1 : J_per_C {init: -0.060}; var e1 : dimensionless; var rho : per_m {init: 0.01}; // Membrane potential
e1 = u1*F/RT;

8.2 GI tract enterocyte

8.3 Renal tubular transport

9. Cardiac myocyte

Tran K, Loiselle D, Crampin E. Regulation of cardiac cellular bioenergetics: mechanisms and consequences. Physiological Reports, 3 (7), 2015, e12464, doi:10.14814/phy2.12464


```
\dot{q}_1 = 3v_4 - v_1 - v_2 - v_3 - v_{10} - v_{11} - v_{13} - 3v_{18}
\dot{q}_2 = v_1 + v_2 + v_3 + v_{10} + v_{11} + v_{13} + 3v_{18} - 3v_4
\dot{q}_3 = v_5 + v_6 + v_7 + v_8 - 2v_4
\dot{q}_4 = 2v_4 - v_5 - v_6 - v_7 - v_8
\dot{q}_{5} = v_{9}
\dot{q}_{6} = -v_{9}
\dot{q}_7 = v_{16} - v_{12}
\dot{q}_8 = v_{12} - v_{16}
\dot{q}_9 = -v_{14} - v_{15} - v_{17}
\dot{q}_{10} = v_{14} + v_{15} + v_{17}
\dot{q}_{11} = v_{18} + v_{19} - v_{20} - v_{21} - v_{22}
\dot{q}_{12} = v_{20} + v_{21} + v_{24} - v_{18} - v_{19} - v_{25} - v_{26} - 2v_{27}
\dot{q}_{13} = v_{22} + v_{23} - v_{24}
\dot{q}_{14} = v_{25}
\dot{q}_{15} = v_{26}
\dot{q}_{16} = 2v_{27} - v_{23} - v_{28}
\dot{q}_{17} = v_{28}
```

Conservation of each ion species:

9.4 Cardiac myocyte

Tran K, Loiselle D, Crampin E. Regulation of cardiac cellular bioenergetics: mechanisms and consequences. Physiological Reports, 3 (7), 2015, e12464, doi:10.14814/phy2.12464


```
\dot{q}_1 = 3v_4 - v_1 - v_2 - v_3 - v_9 - v_{10} - v_{11} - 3v_{12}
\dot{q}_2 = v_1 + v_2 + v_3 + v_9 + v_{10} + v_{11} + 3v_{12} - 3v_4
\dot{q}_3 = v_5 + v_6 + v_7 + v_8 - 2v_4
\dot{q}_4 = 2v_4 - v_5 - v_6 - v_7 - v_8
\dot{q}_5 = v_{14} - v_{13}
\dot{q}_6 = v_{13} - v_{14}
\dot{q}_7 = -v_{15} - v_{16} - v_{17}
\dot{q}_8 = v_{15} + v_{16} + v_{17}
\dot{q}_{9} = v_{9}
\dot{q}_{10} = -v_9
\dot{q}_{11} = v_{12} + v_{19} - v_{20} - v_{21} - v_{22}
\dot{q}_{12} = v_{20} + v_{21} + v_{24} - v_{12} - v_{19} - v_{25} - v_{26} - 2v_{27} + v_{29} - v_{30}
\dot{q}_{13} = v_{22} + v_{23} - v_{24}
\dot{q}_{14} = v_{25}
\dot{q}_{15} = v_{26}
\dot{q}_{16} = 2v_{27} - v_{23} - v_{28}
\dot{q}_{17} = v_{28}
\dot{q}_{18} = v_{30}
```

Conservation of each ion species:

 $\begin{array}{lll} Na^+: & \dot{q}_1 + \dot{q}_2 = 0 \\ K^+: & \dot{q}_3 + \dot{q}_4 = 0 \\ HCO_3^-: & \dot{q}_5 + \dot{q}_6 = 0 \\ Cl^-: & \dot{q}_7 + \dot{q}_8 = 0 \\ H^+: & \dot{q}_9 + \dot{q}_{10} = 0 \\ Ca^{2+}: & \dot{q}_{11} + \dot{q}_{12} + \dot{q}_{13} + \dot{q}_{14} + \dot{q}_{15} + \dot{q}_{16} + \dot{q}_{17} + \dot{q}_{18} = 0 \end{array}$

10. Membrane transporters

Examples:

10.1 Neutral membrane transporters: Chloride-Bicarbonate anion exchanger, AE1
 10.2 Electrogenic membrane transporters: Sodium-Glucose cotransporter SGLT1
 10.3 ATPase-dependent transporters: Sodium-Potassium ATPase
 10.4 Sodium/Hydrogen Exchanger

10.1 <u>Neutral transporters</u>

We use the AE1 Cl^{-}/HCO_{3}^{-} anion exchanger[†] as an example of a neutral exchanger:

[†] Weinstein AM. A mathematical model of the outer medullary collecting duct of the rat, 2000. *AJP (Renal Physiology)*, 279, F24-F45. https://models.physiomeproject.org/exposure/9cce5/Weinstein_2000_AE1.cellml/view?searchterm=weinstein Cl^{-}/HCO_{3}^{-} anion exchanger, AE1

Cl^{-}/HCO_{3}^{-} anion exchanger, AE1

Adding the potentials and inserting μ and v in place of the 0-nodes and 1-nodes:

Cl^{-}/HCO_{3}^{-} anion exchanger, AE1

30 equations in 30 variables (q_1 - q_{10} ; $v_1 - v_6$; μ_1 - μ_{14}) with 16 parameters (K_1 - K_{10} ; κ_1 - κ_6)

10 species q ₁ q ₁₀	14 potentials μ_1 μ_{14}				
$\dot{q_1} = -v_1$	$\boldsymbol{\mu_1} = RT \ln K_1 \boldsymbol{q_1}$				
$\dot{q}_2 = v_2$	$\boldsymbol{\mu_2} = RT \ln K_2 \boldsymbol{q_2}$				
$\dot{q}_3 = v_3$	$\boldsymbol{\mu_3} = RT \ln K_3 \boldsymbol{q}_3$				
$\dot{q}_4 = -v_4$	$\boldsymbol{\mu_4} = RT \ln K_4 \boldsymbol{q}_4$				
$\dot{q}_5 = v_3 - v_1$	$\boldsymbol{\mu_5} = RT \ln K_5 \boldsymbol{q}_5$				
$\dot{q}_6 = v_2 - v_4$	$\boldsymbol{\mu_6} = RT \ln K_6 \boldsymbol{q}_6$				
$\dot{q}_7 = v_1 - v_6$	$\boldsymbol{\mu_7} = RT \ln K_7 \boldsymbol{q}_7$				
$\dot{q}_8 = v_6 - v_2$	$\boldsymbol{\mu_8} = RT \ln K_8 \boldsymbol{q}_8$				
$\dot{q}_9 = v_5 - v_3$	$\boldsymbol{\mu}_9 = RT \ln K_9 \boldsymbol{q}_9$				
$\dot{q_{10}} = v_4 - v_5$	$\mu_{10} = RT \ln K_{10} q_{10}$				
	$\mu_{11}=\mu_3+\mu_5$				
	$\mu_{12}=\mu_4+\mu_6$				
	$\mu_{13} = \mu_1 + \mu_5$				
	$\mu_{14} = \mu_2 + \mu_6$				

$$\dot{\boldsymbol{q}} = N\boldsymbol{v} \text{ where } N = \begin{bmatrix} -1 & & & \\ & 1 & 1 & & \\ & 1 & -1 & & \\ -1 & & -1 & & \\ & -1 & & -1 & \\ & 1 & 1 & -1 & \\ & & 1 & -1 & \\ & & & 1 & -1 \end{bmatrix}$$

is the stoichiometry matrix for the network.

6 molar flows $oldsymbol{v}_1$.. $oldsymbol{v}_6$ associated with the 6 reactions

$$\begin{aligned} \mathbf{v}_{1} &= \kappa_{1} \left(e^{\mu_{13}/RT} - e^{\mu_{7}/RT} \right) = \kappa_{1} \left(e^{\mu_{1}/RT} \cdot e^{\mu_{5}/RT} - e^{\mu_{7}/RT} \right) &= \kappa_{1} \left(K_{1} q_{1} K_{5} q_{5} - K_{7} q_{7} \right) \\ \mathbf{v}_{2} &= \kappa_{2} \left(e^{\mu_{8}/RT} - e^{\mathbf{14}/RT} \right) = \kappa_{2} \left(K_{8} q_{8} - e^{\mu_{2}/RT} \cdot e^{\mu_{6}/RT} \right) &= \kappa_{2} \left(K_{8} q_{8} - K_{2} q_{2} K_{6} q_{6} \right) \\ \mathbf{v}_{3} &= \kappa_{3} \left(e^{\mu_{9}/RT} - e^{\mu_{11}/RT} \right) = \kappa_{3} \left(e^{\mu_{9}/RT} - e^{\mu_{3}/RT} \cdot e^{\mu_{5}/RT} \right) &= \kappa_{3} \left(K_{9} q_{9} - K_{3} q_{3} K_{5} q_{5} \right) \\ \mathbf{v}_{4} &= \kappa_{4} \left(e^{\mu_{12}/RT} - e^{\mu_{10}/RT} \right) = \kappa_{4} \left(e^{\mu_{4}/RT} \cdot e^{\mu_{6}/RT} - e^{\mu_{10}/RT} \right) &= \kappa_{4} \left(K_{4} q_{4} K_{6} q_{6} - K_{10} q_{10} \right) \\ \mathbf{v}_{5} &= \kappa_{5} \left(e^{\mu_{10}/RT} - e^{\mu_{9}/RT} \right) &= \kappa_{5} \left(K_{10} q_{10} - K_{9} q_{9} \right) \\ \mathbf{v}_{6} &= \kappa_{6} \left(e^{\mu_{7}/RT} - e^{\mu_{8}/RT} \right) &= \kappa_{6} \left(K_{7} q_{7} - K_{8} q_{8} \right) \end{aligned}$$

6 molar flows v_1 .. v_6 associated with the 6 reactions

$$\begin{aligned} \mathbf{v}_{1} &= \kappa_{1}(K_{1}q_{1}K_{5}q_{5} - K_{7}q_{7}) &= k_{1}^{f}q_{1}q_{5} - k_{1}^{r}q_{7} & \text{where } k_{1}^{f} = \kappa_{1}K_{1}K_{5} & k_{1}^{r} = \kappa_{1}K_{7} \\ \mathbf{v}_{2} &= \kappa_{2}(K_{8}q_{8} - K_{2}q_{2}K_{6}q_{6}) &= k_{2}^{f}q_{8} &- k_{2}^{r}q_{2}q_{6} \\ \mathbf{v}_{3} &= \kappa_{3}(K_{9}q_{9} - K_{3}q_{3}K_{5}q_{5}) &= k_{3}^{f}q_{9} &- k_{3}^{r}q_{3}q_{5} \\ \mathbf{v}_{4} &= \kappa_{4}(K_{4}q_{4}K_{6}q_{6} - K_{10}q_{10}) &= k_{4}^{f}q_{4}q_{6} - k_{4}^{r}q_{10} \\ \mathbf{v}_{5} &= \kappa_{5}(K_{10}q_{10} - K_{9}q_{9}) &= k_{5}^{f}q_{10} &- k_{5}^{r}q_{9} \\ \mathbf{v}_{6} &= \kappa_{6}(K_{7}q_{7} - K_{8}q_{8}) &= k_{6}^{f}q_{7} &- k_{6}^{r}q_{8} \\ \end{aligned}$$

The Gibbs free energy change for the overall system is given by $\frac{\prod_i k^f}{\prod_i k^r} = e^{\Delta G/RT}$,

therefore
$$\frac{\prod_{i} k_{i}^{f}}{\prod_{i} k_{i}^{r}} = \frac{\kappa_{1}K_{1}K_{5}.\kappa_{2}K_{8}.\kappa_{3}K_{9}.\kappa_{4}K_{4}K_{6}.\kappa_{5}K_{10}.\kappa_{6}K_{7}}{\kappa_{1}K_{7}.\kappa_{2}K_{2}K_{2}K_{6}.\kappa_{3}K_{3}K_{5}.\kappa_{4}K_{10}.\kappa_{5}K_{9}.\kappa_{6}K_{8}} = \frac{K_{1}K_{4}}{K_{2}K_{3}} = e^{\Delta G/RT}$$

i.e. $\Delta G = RT \ln K_1 + RT \ln K_4 - RT \ln K_2 - RT \ln K_3$

Note the conservation of enzyme mass: $\dot{q_5} + \dot{q_6} + \dot{q_7} + \dot{q_8} + \dot{q_9} + \dot{q_{10}} = v_3 - v_1 + v_2 - v_4 + v_1 - v_6 + v_6 - v_2 + v_5 - v_3 + v_4 - v_5 = 0$

/ State v	ariables
var q1	: mole {init: 1}
var q2	: mole {init: 0}
var q3	: mole {init: 0}
var q4	: mole {init: 0}
var q5	: mole {init: 0}
var <mark>q6</mark>	: mole {init: 0}
var q7	: mole {init: 0}
var <mark>q8</mark>	: mole {init: 0}
var <mark>q9</mark>	: mole {init: 0}
var q1	D: mole {init: 0}
var <mark>v1</mark>	: mol_per_s;
var <mark>v2</mark>	: mol_per_s;
var <mark>v3</mark>	: mol_per_s;
var <mark>v4</mark>	: mol_per_s;
var <mark>v5</mark>	: mol_per_s;
var <mark>v6</mark>	: mol_per_s;
var u1	: J_per_mol;
var <mark>u2</mark>	: J_per_mol;
var <mark>u3</mark>	: J_per_mol;
var <mark>u4</mark>	: J_per_mol;
var <mark>u5</mark>	: J_per_mol;
var <mark>u6</mark>	: J_per_mol;
var <mark>u7</mark>	: J_per_mol;
var <mark>u8</mark>	: J_per_mol;
var <mark>u9</mark>	: J_per_mol;
var u1	0 : J_per_mol;
var u1	L: J_per_mol;
var u1	2: J_per_mol;
var u1	s: J_per_mol;
var u1 4	4: J per mol;

1

/ Constitutive paramet	ters
var K_q1 : per_mol	{init: 20};
var K_q2 : per_mol	{init: 20};
var K_q3 : per_mol	{init: 20};
var K_q4 : per_mol	{init: 20};
var K_q5 : per_mol	{init: 20};
var K_q6 : per_mol	{init: 20};
var K_q7 : per_mol	{init: 20};
var K_q8 : per_mol	{init: 20};
var K_q9 : per_mol	{init: 20};
var K_q10: per_mol	{init: 20};
var K_Re1: mol_per_	s {init: 0.1};
var K_Re2: mol_per_	s {init: 0.1};
var K_Re3: mol_per_	s {init: 0.1};
var K_Re4: mol_per_	s {init: 0.1};
var K_Re5: mol_per_	s {init: 0.1};
var K_Re6: mol_per_	s {init: 0.1};

// Conservation laws ode(**q1**, t) = -**v1**; ode(**q2** , t) = **v2**; ode(q3 , t) = v3; ode(**q4** , t) = -**v4**; ode(**q5**, t) = **v3-v1**; ode(q6 , t) = v2-v4; ode(q7 , t) = v1-v6; ode(**q8**, t) = **v6-v2**; ode(q9 , t) = v5-v3; ode(q10, t) = v4-v5; u3 = u1 + u2; u6 = u7 + u8;u10 = u8 + u9; u13 = u14 + u15;**u15** = **u1**;

// Con	stitutive relations	
u1	= RT*ln(K1 * q1);	
u2	= RT*ln(K2 * q2);	
u3	= RT*ln(K3 * q3);	
u4	= RT*ln(K4 * q4);	
u5	= RT*ln(K5 * q5);	
u6	= RT*ln(K6 * q6);	
u7	= RT*ln(K7 * q7);	
u8	= RT*ln(K8 * q8);	
u9	= RT*ln(K9 * q9);	
u10	= RT*ln(K10 * q10);	

CellML tutorial model membrane transporters 1

1	OpenCOR		part of all	and in case of the local division of the loc	100		100		x
<u>F</u> il	e <u>V</u> iew <u>T</u> ools	<u>H</u> elp							
	BG #1.cellml 🗵	BG #2.cellml 🗵	BG #3.cellml 🗵	BG #4.cellml 🗵 🛛 BG #5.cellml 🛽	BG #6.cellml 🗵	BG #7.cellml 🗵	AE1_BG.sedml 🗵		
	• • C		0	🖗 🔶 🗕 - 💥 - 🛛	🐨 - 🛛 🎅				ן ר
	•	Simulation		Q.QQZ =					a I
	Property	Value	Unit	8:885					
	Starting point	0	second	8:883					
	Ending point	5	second	0.001				<u>.</u>	
	Point interval	0.01	second	0 1	2		3 4	4 !	5
	•	Graphs		<u></u>					
		Parameters		8:882					
	Property	Value	Unit 🔺	8:885					
	4 main			8:883 -			÷	<u>.</u>	4
	🖲 K_Cl_i	3.0368	per_mol	0 1	2		3 4	4 !	5
	🧿 к_с	0.3293	per_mol	0981 =					
g	K_E_i	0.9997	per_mol	8:882					6
ditir		1.0003	per_mol	8:885					i ja
1		3.0339	per_mol	0.003 -			· · · · ·	<u>.</u>	i e
5	K F	0.3294	per_mol	0 1	2		3 4	4 !	5
let.	G K_E	3.0387	per_mol	8.887					
l is	<u>(</u> к_н	0.3292	per_mol	8:885				ļ	
	🧿 к_н	3.0378	per_mol	8:883				<u>.</u>	
	🧕 k_Re1	31.0779	mol_per_s	0.001 3		1 1 1 1			
	k_Re2	98.1418	mol_per_s	0 1	2		3 4	4 !	5
	k_Re3	80.4431	mol_per_s	of 485 =					
	k Re5	217.4391	mol_per_s	98883 I					
	k Re6	122.9309	mol per s	60875 E					
	🔬 mu	-inf	J_per_mol	:08965 ⊐			÷	·····	
	\land mu	-14257.5383764	J_per_mol	0 1	2		3 4	4 !	5
	🔬 mu	-inf	J_per_mol	0,0003 ∃					1
	🗛 mu	-11486.1120119	J_per_mol	0,00025					
	M mu	-inf	J_per_mol						
	M mu	-inf	J_per_moi	ESSE				<u>.</u>	
	<		A later	0 1	2		3 4	4	5
									-

10.2 Electrogenic transporters

The Sodium-Glucose cotransporter SGLT1 is an electrogenic co-transporter modelled as a 6-state process[†]:

[†] Eskandari S, Wright EM and Loo DDF. Kinetics of the Reverse Mode of the Na⁺/Glucose Cotransporter. J Membrane Biol, 204(1):23–32, 2005.

Sodium-Glucose Transporter Protein (SGLT)

$$\begin{aligned}
\mathbf{v}_{1} &= \kappa_{1} \left(e^{\mu_{11}/RT} - e^{\mu_{12}/RT} \right) &= \kappa_{1} \left(K_{1}^{2} K_{5} q_{1}^{2} q_{5} e^{-\rho_{1} K_{E} \cdot q_{E}} - K_{7} q_{7} e^{\rho_{1} K_{E} \cdot q_{E}} \right) \\
\mathbf{v}_{2} &= \kappa_{2} \left(e^{\mu_{8}/RT} - e^{\mu_{13}/RT} \right) &= \kappa_{2} \left(K_{8} q_{8} - K_{2}^{2} K_{6} q_{2}^{2} q_{6} \right) \\
\mathbf{v}_{3} &= \kappa_{3} \left(e^{\mu_{14}/RT} - e^{\mu_{9}/RT} \right) &= \kappa_{2} \left(K_{8} q_{8} - K_{2}^{2} K_{6} q_{2}^{2} q_{6} \right) \\
\mathbf{v}_{4} &= \kappa_{4} \left(e^{\mu_{10}/RT} - e^{\mu_{9}/RT} \right) &= \kappa_{3} \left(K_{3} K_{7} q_{3} q_{7} - K_{9} q_{9} \right) \\
\mathbf{v}_{4} &= \kappa_{4} \left(e^{\mu_{10}/RT} - e^{\mu_{15}/RT} \right) &= \kappa_{4} \left(K_{10} q_{10} - K_{4} K_{8} q_{4} q_{8} \right) \\
\mathbf{v}_{5} &= \kappa_{5} \left(e^{\mu_{16}/RT} - e^{\mu_{17}/RT} \right) &= \kappa_{5} \left(K_{6} q_{6} e^{-\rho_{1} K_{E} \cdot q_{E}} - K_{5} q_{5} e^{\rho_{2} K_{E} \cdot q_{E}} \right) \\
\mathbf{v}_{6} &= \kappa_{6} \left(e^{\mu_{7}/RT} - e^{\mu_{8}/RT} \right) &= \kappa_{6} \left(K_{7} q_{7} - K_{8} q_{8} \right) \\
\mathbf{v}_{7} &= \kappa_{7} \left(e^{\mu_{9}/RT} - e^{\mu_{10}/RT} \right) &= \kappa_{7} \left(K_{9} q_{9} - K_{10} q_{10} \right)
\end{aligned}$$

$$\mu_{1} = RT \ln K_{1}q_{1} \qquad \mu_{11} = \mu_{5} + 2\mu_{1} - \rho_{1}\mu_{E}$$

$$\mu_{2} = RT \ln K_{2}q_{2} \qquad \mu_{12} = \mu_{7} + \rho_{1}\mu_{E}$$

$$\mu_{3} = RT \ln K_{3}q_{3} \qquad \mu_{13} = \mu_{6} + 2\mu_{2}$$

$$\mu_{4} = RT \ln K_{4}q_{4} \qquad \mu_{14} = \mu_{3} + \mu_{7}$$

$$\mu_{5} = RT \ln K_{5}q_{5} \qquad \mu_{15} = \mu_{4} + \mu_{8}$$

$$\mu_{6} = RT \ln K_{6}q_{6} \qquad \mu_{16} = \mu_{6} - \rho_{2}\mu_{E}$$

$$\mu_{7} = RT \ln K_{7}q_{7} \qquad \mu_{17} = \mu_{5} + \rho_{2}\mu_{E}$$

$$\mu_{8} = RT \ln K_{8}q_{8}$$

$$\mu_{9} = RT \ln K_{10}q_{10}$$

$$\mu_{E} = RT \cdot K_{E} \cdot q_{E}$$
10.3 <u>ATPase transporters</u>

Na/K-ATPase

Na/K-ATPase

 $3Na_i^+ + 2K_o^+ + ATP \Rightarrow 3Na_0^+ + 2K_i^+ + ADP + Pi$

Equations for Na/K-ATPase

10.4 Sodium/Hydrogen Exchanger

Sodium/Hydrogen Exchanger

Na^+/H^+ exchanger, NHE3

Equations for NHE3

$\dot{q_1} = -v_1$	$\boldsymbol{\mu_1} = RT \ln K_1 \boldsymbol{q}_1$	$\boldsymbol{\mu_{15}} = \boldsymbol{\mu_1} + \boldsymbol{\mu_7}$	RE1: $v_1 = \kappa_1 \left(e^{\mu_{15}/RT} - e^{\mu_{9}/RT} \right) = \kappa_1 \left(K_1 K_7 q_1 q_7 - K_9 q_9 \right)$
$\dot{q_2} = v_2$	$\boldsymbol{\mu_2} = RT \ln K_2 \boldsymbol{q}_2$	$\boldsymbol{\mu_{16}} = \boldsymbol{\mu_2} + \boldsymbol{\mu_8}$	RE2: $v_2 = \kappa_2 \left(e^{\mu_{10}/RT} - e^{\mu_{16}/RT} \right) = \kappa_2 \left(K_{10} q_{10} - K_2 K_8 q_2 q_8 \right)$
$\dot{q}_3 = v_3$	$\boldsymbol{\mu_3} = RT \ln K_3 \boldsymbol{q}_3$	$\boldsymbol{\mu_{17}} = \boldsymbol{\mu_3} + \boldsymbol{\mu_7}$	RE3: $u_2 = \kappa_2 \left(e^{\mu_{11}/RT} - e^{\mu_{17}/RT} \right) = \kappa_2 \left(K_{11} q_{11} - K_2 K_7 q_2 q_7 \right)$
$\dot{q}_4 = -v_4$	$\boldsymbol{\mu_4} = RT \ln K_4 \boldsymbol{q}_4$	$\mu_{18} = \mu_4 + \mu_8$	$PE4 v = u \left(\frac{\mu_{10}}{RT} \frac{\mu_{12}}{RT} \right) = u \left(\frac{V}{R} \frac{V}{R} \frac{V}{R} \frac{V}{R} \right)$
$\dot{q}_5 = v_5$	$\boldsymbol{\mu_5} = RT \ln K_5 \boldsymbol{q}_5$	$\mu_{19} = \mu_5 + \mu_7$	RE4: $U_4 = \kappa_4 \left(e^{\mu_{10}/m} - e^{\mu_{12}/m} \right) = \kappa_4 \left(\kappa_4 \kappa_8 q_4 q_8 - \kappa_{12} q_{12} \right)$
$\dot{a}_{6} = -v_{6}$	$\boldsymbol{\mu_6} = RT \ln K_6 \boldsymbol{q_6}$	$u_{20} = u_6 + u_8$	RE5: $v_5 = \kappa_5 \left(e^{\mu_{13}/\kappa_1} - e^{\mu_{19}/\kappa_1} \right) = \kappa_5 \left(K_{13} q_{13} - K_5 K_7 q_5 q_7 \right)$
$\dot{q}_{7} = v_{3} - v_{1}$	$\boldsymbol{\mu}_{7} = RT \ln K_{7} \boldsymbol{q}_{7}$	1-20 1-0 1-0	RE6: $v_6 = \kappa_6 \left(e^{\mu_{20}/RT} - e^{\mu_{14}/RT} \right) = \kappa_6 \left(K_6 K_8 q_6 q_8 - K_{14} q_{14} \right)$
$\dot{q_8} = v_2 - v_4$	$\boldsymbol{\mu_8} = RT \ln K_8 \boldsymbol{q}_8$		RE7: $v_7 = \kappa_7 \left(e^{\mu_9/RT} - e^{\mu_{10}/RT} \right) = \kappa_7 \left(K_9 q_9 - K_{10} q_{10} \right)$
$\vec{q}_9 = v_1 - v_7$	$\boldsymbol{\mu_9} = RT \ln K_9 \boldsymbol{q}_9$		RE8: $v_8 = \kappa_8 \left(e^{\mu_{12}/RT} - e^{\mu_{11}/RT} \right) = \kappa_8 \left(K_{12} q_{12} - K_{11} q_{11} \right)$
$q_{10}^{\cdot} = v_7 - v_2$	$\boldsymbol{\mu_{10}} = RT \ln K_{10} \boldsymbol{q}_{10}$		RE9: $v_9 = \kappa_9 \left(e^{\mu_{14}/RT} - e^{\mu_{13}/RT} \right) = \kappa_9 \left(K_{14} q_{14} - K_{13} q_{13} \right)$
$q_{11}^{\cdot} = v_8 - v_3$	$\mu_{11} = RT \ln K_{11} q_{11}$		
$q_{12}^{\cdot}=v_4-v_8$	$\boldsymbol{\mu_{12}} = RT \ln K_{12} \boldsymbol{q}_{12}$		
$q_{13}^{\cdot} = v_9 - v_5$	$\mu_{13} = RT \ln K_{13} q_{13}$		
$q_{14} = v_6 - v_9$	$\boldsymbol{\mu_{14}} = RT \ln K_{14} \boldsymbol{q}_{14}$		

CellML tutorial model membrane transporters 5

11. Metabolism

Examples: 11.1 Glycolysis

11.1 <u>Glycolysis</u>

12. A common framework based on bond graphs

Physical systems:

Physics	potential μ	units flow v		units	$\int oldsymbol{v} o oldsymbol{q}$
Electrical	voltage J.C ⁻¹		current	C.s ⁻¹	charge
Solid mechanics	force	J.m ⁻¹	velocity	m.s ⁻¹	displacement
Fluid mechanics	pressure	J.m ⁻³	volume flow	<i>m</i> ³ . <i>s</i> ⁻¹	volume
Biochemical	chemical potential	J.mol ⁻¹	molar flow	mol.s ⁻¹	moles
Heat transfer	temperature	J.e ⁻¹	entropy flow	e.s ⁻¹	entropy
Electromagnetic	photon potential	J.cd ⁻¹	photon flux	cd.s ⁻¹	photons
Diffusion	solute partial pressure	J.m ³ .mol ⁻¹	molar conc ⁿ flow	mol.m ⁻³ .s ⁻¹	molar concentration

Physics	Constitutive relations			Conservation laws		
	Elastance	Dissipation	Inertia	0-node	1-node	
Electrical	$\mu = Eq$	$\mu = R v$ or $v = \kappa \mu$	$\mu = La$	KCL	KVL	
Solid mechanics	$\mu = Eq$	$\mu = k v$ or $v = \kappa \mu$	$\mu = ma$	compatibility	force balance	
Fluid mechanics	$\boldsymbol{\mu} = p_0 e^{\boldsymbol{k}\boldsymbol{q}}$	$\mu = R v$ or $v = \kappa \mu$	$\mu = ma$	flux balance	force balance	
Biochemical	$\boldsymbol{\mu} = RT \ln \mathbf{K} \boldsymbol{q}$	$\boldsymbol{v} = \kappa \left(e^{\boldsymbol{\mu_1}/RT} - e^{\boldsymbol{\mu_2}/RT} \right)$		flux balance	stoichiometry	
Heat transfer	$\mu = \mathbf{E} \boldsymbol{q}$	$\boldsymbol{\mu} = \mathbf{R}\boldsymbol{v} \text{ or } \boldsymbol{v} = \kappa \boldsymbol{\mu}$		flux balance		
Electromagnetic						
Diffusion	$\mu = \mathbf{E} \boldsymbol{q}$	$\boldsymbol{\mu} = \mathbf{R}\boldsymbol{v} \text{ or } \boldsymbol{v} = \kappa \boldsymbol{\mu}$		mass balance	partial pressure balance	

Physics	Energy of quantity as	is stored (E) with	is dissipated (R) with	is stored (L) with
Electrical	charge (C)	capacitor	resistor	inductor (EM field)
Solid mechanics	displacement (m)	spring	damper	mass (inertia)
Fluid mechanics	volume (<i>m</i> ³)	pressure density	viscosity	mass (inertia)
Biochemical	moles (<i>mol</i>)	concentration	exothermic reaction	
Heat transfer				
Electromagnetic				
Diffusion	molar concentration	solvent solubility	diffusion	

12.1 A GUI for creating bond BG models in OpenCOR

OpenCOR

Latest version of OpenCOR has HTML window that we will use for SVG diagrams and Javascript interactions. Alan is developing API to link this window to OpenCOR data structures.

12.2 Annotation with ApiNATOMY

	BG attributes								
<u>BG terms</u>	Variables			Conservation law		Constitutive relation		ApiNATOMY	
Bond	flo	ow v (q/s)) potential μ (J/q)		common power (J/s)			Edge (conduit)	
0-node	q a	C m m ³ mol entropy C.s ⁻² m.s ⁻²	μ	Voltage Force Pressure Chemical potential Temperature Impedance Momentum	common $\boldsymbol{\mu}$ $\Sigma \boldsymbol{\upsilon} = 0$	$\dot{q} = v$ $\dot{v} = a$	elastance $\mu(q)$ induction $\mu(a)$	Capacitor (C) Spring (k) Compliance Boltzmann Heat capacity Inductor (L) Inertia (m)	Compartment
1-node		υ	$\mu_{1,}\mu_{2},$		common \boldsymbol{v} , $\Sigma \boldsymbol{\mu} = 0$		-		Process
Resistance		υ μ		common $oldsymbol{v}$		dissipation $\boldsymbol{\mu}(\boldsymbol{v})$		Compartment with process	
Reaction		\boldsymbol{v} $\boldsymbol{\mu}_{1,}\boldsymbol{\mu}_{2}$		common $oldsymbol{v}$		Marcelin-de Donder		Compartment with process	
TF		$\boldsymbol{v}_1, \boldsymbol{v}_2$ $\boldsymbol{\mu}_1, \boldsymbol{\mu}_2$		common power		scale factor		Process	

Each 0-node defines just one species and is always identified with a unique ApiNATOMY compartment, so a compartment can contain multiple 0-nodes.

13. Continuum concepts

* Note: Redo solid & fluid mechanics first together via Cauchy relations

Flow (kinematic) variables are defined at nodes (equivalent of BG 1-nodes)

A flow node has an associated conservation law $\sum \mu = 0$ e.g. force balance

Potential (e.g. stress) variables are defined at Gauss points (equivalent of BG 0-nodes)

A **potential node** has an associated conservation law $\sum v = 0$ e.g. mass balance

Bilinear basis functions

Constitutive law $\tau = f(q, v, a)$ is always sampled at **potential nodes** (Gauss points). Flow or kinematic variables are always interpolated from flow nodes.